
An Introduction to
Unicode

Henri Sivonen

What’s Unicode?

• 21-bit coded character set

• Includes property data, rules and algorithms

• Aims to cover all human writing systems
currently in use

• Also covers some obsolete systems for
scholarly use

ISO-10646

• A standard list of characters that is the
same as the Unicode list of characters

• Looks more official as a reference

• The Unicode Standard is more than the list

• Just refer to Unicode

• Specs that are available on the Web win

Why Unicode?

• Multiple encodings are trouble

• Legacy repertoires often too narrow

• Mutually exclusive repertoires are bad

• Why should the user have to pick either
German or Russian support?

• Display layer late binding prevents smart
processing based on character semantics

 Resistance is Futile

• Immense momentum towards Unicode

• XML, HTML 4…

• Java, C#, Python, Perl 5.8, JavaScript…

• Mac OS X, Windows 2000, Gnome 2…

• Apple, Microsoft, IBM, Sun, Gnome
Foundation, W3C, IETF all pulling to the
same direction!

You Will be Assimilated

• Better to conform now than to fight and
conform later

• Your boss wants XML; XML wants Unicode

• Need €? ISO-8859-15 is just fire fighting!

Free Your Mind

• People have a lot of prior assumptions that
are not true of Unicode

• Some of them were true with more
primitive text encodings and fonts

• It helps not to assume these things

• For example, there’s no single “Unicode
encoding” for interchange

 Misconceptions

• Unicode character = 16 bits

• Character = glyph

• Code point = glyph index

• Selection unit = glyph

• Key press = character

• Caret moves character by character

More Misconceptions

• I am European / American / Japanese.
I don’t need to know about Unicode.

• Displaying Chinese is the hardest problem

• Once you’ve tackled CJK, you’re done

• Unicode is just “wide ISO-8859-1”—the
same way ISO-8859-1 is “wide ASCII”

• Klingon is in Unicode

Glyph

• An atomic shape in a font

• Different glyphs: a a a A A A

• One glyph: ä fi

• Two glyphs: a ̧fi

• Glyph sharing between Latin, Greek and
Cyrillic possible (leads to Latin dominance)

Grapheme

• Fuzzy concept

• A graphical unit as perceived by a user

• May consist of multiple glyphs

• Eg. base character plus diacritics

Abstract Character

• A is A regardless of font

• A A A A A A A A A A A A A A A A !

• Greek Α and Cyrillic А are distinct

• Upper and lower case are distinct

Control Characters

• Ambiguous controls from ASCII

• Line feed, carriage return, etc.

• New ones

• Ligature modifiers, less ambiguous
paragraph separators, etc.

Combining Characters

• How many characters: ä?

• One: LATIN SMALL LETTER A WITH DIAERESIS

• Two: LATIN SMALL LETTER A + COMBINING DIAERESIS

• Precomposed vs. decomposed

• Canonical equivalence

• Normalization forms

Presentation Forms

• fi: LATIN SMALL LETTER F + LATIN SMALL LETTER I

• fi: LATIN SMALL LIGATURE FI

• Presentation forms as characters for
compatibility with legacy encodings

• Compatibility equivalence

• Normalization forms

Normalization Forms

Precomposed Decomposed

Compatibility
chars intact NFC NFD

Compatibility
decomposition NFKC NFKD

Normalization Forms

↔

↓
NFC NFD

NFKC NFKD

Unicode as
“Wide ASCII”

• Requires precomposed form

• Workable with

• Latin, Greek, Cyrillic, Armenian, Georgian

• Chinese, Japanese, modern Korean

• Ogham, Runic, …

What’s Latin?

• Not just A–Z with a mix of diacritics

• IPA

• IPA-based characters in African writing

• The poorest people have the strangest
characters

• Font availability problems

Latin Complications

• Sorting with local conventions

• Searching

• Case-insensitive?

• Diacritic-insensitive?

• Turkısh i

Sorting

• How to sort ä?

• Finnish, Swedish:
letter on own right; sort after z and å

• English, French:
a with diacritic; sort after a

• German phonebook:
alternative of ae; sort between ae and af

Case Mapping

• German ß

• Turkısh i

• Croatian digraphs

• Greek also: Final sigma

Diacritic Appearance

• Caron and cedilla may look different

• Naïve combinations in Gill Sans: g ̧k ̧d ̌t ̌

• Helvetica: ģ ķ ď ť

• Some fonts have alternative glyphs

• Core fonts biased towards bigger markets

Han Unification

• CJK ideographs share a Chinese origin

• If encoded thrice, even common ideographs
wouldn’t fit in the BMP

• An ideograph that appears across CJK is
considered one character (unified)

• Controversial: Imposed by Westeners

GB18030

• Instead of endorsing Unicode, China made
a new standard on its own…

• …And outlawed the sale of non-
conforming software products!

• The sane conformance strategy:
Unicode internally, Unicode extended to
cover GB18030, converters for IO, huge
font (even if ugly) provided with the OS

Beyond “Wide ASCII”

• One-to-one character to glyph mapping
and left to right glyph placement on the
baseline not enough for all writing systems

• Right to left, ligatures, positional forms,
combining marks, reordering…

Different Cultural
Expectations

• Latin

• History of adapting writing to technology

• Dumbed-down typography tolerated

• Arabic

• Calligraphic appearance retained in print

• Contextual shaping expected up front

Progressive Latin
Featuritis

ALL UPPER CASE MONOSPACE
English with lower case
Éüröpéän çhäräçtérs
Variable-width glyphs
“Quotes”—even dashes
Type with kerning pairs
Specific automatic ligatures
Aŗb̋itr̫ȁ̗r̐y ̻diacriticsFu! su"o# for arbitrary $aping

Bidi

• Bidirectional layout needed for Hebrew,
Arabic, etc.

• Characters stored and typed in logical
order

• Characters have inherent directionality:
LTR (eg. a), RTL (eg. א) or neutral (eg. ?)

• Need to know dominant direction

Positional Forms

• Required for Arabic

• Abstract character stored – glyph varies

• Isolated ف, final ف, medial ف, initial ف

• Can be used as an effect with Latin: a"

Grapheme Boundaries

Ex̊ ̨ăm̨̆pl̆ę ̊ य" न$ कोड (या *

Caret stops Ex̊ ̨ăm̨̆pl̆ę ̊ य" न$ कोड (या *

Backspaces 7 15

Characters 15 15

Hangul

• Alphabet–syllabary duality

• A syllable block (한) consists of alphabetic
letters called jamo (ㅎ ㅏ ㄴ)

• When treated as an alphabet, layout
software needs to group letters as blocks

• Precomposed syllable characters for
modern Korean only

Fonts

• Type 1 format inadequate

• TrueType more extensible

• Extended TrueType (.ttf)

• OpenType (.otf)

• Apple Advanced Typography (.dfont)

Extended TrueType

• Like old TrueType but with a larger
repertoire and Unicode mapping

• May contain additional tables for OpenType
“smart font” features

OpenType

• Extended TrueType with Type 1 geometry

• Provides a migration path for foundries
with a heavy investment in Type 1 fonts

• Backed by Adobe and Microsoft

Apple Advanced
Typography

• Resurrected GX

• More advanced shaping than in OpenType

• Features overlap with OpenType

• Only supported by Apple

• Advanced features not supported by
Adobe’s cross-platform font engine

Printing

• PostScript and PDF have an old-style notion
of a font

• A font is basically an array of hinted
glyphs (with advances)

• Need to build magic into a printing library
that lets apps use new-style fonts and
complex text layout

Printing, continued

• Auto-generate embedded fonts with up to
256 glyphs in each

• Type 1 or 42 depending on glyph data

• Position glyphs individually

• Recovering intelligible text gets ugly

• PDF may contain reverse mappings

Unicode Encoding
Forms and Schemes

• More than one way to store sequences of
code points

• Unicode Encoding Form: Representation as
in-memory code units (32, 16 or 8 bits)

• Unicode Encoding Scheme: Representation
as bytes for interchange

• Encoding Form + byte order

UTF-32

• 32-bit code units

• One code unit per code point

• Straight-forward

• Wastes space

• Byte order issues with serialization

• Don’t use for interchange

UTF-16

• 16-bit code units

• Extension to the original UCS-2 encoding

• BMP characters take one code unit

• Astral characters take two code units
(surrogate pair)

• Chars above U+FFFF don’t fit in 16 bits

• Represented in UTF-16 as a surrogate pair
consisting of two 16-bit code units

Surrogates

u u u u u x x x x x x x x x x x x x x x x

1 1 0 1 1 1 x x x x x x x x x x1 1 0 1 1 0 w w w w x x x x x x

Where = − 1u u u u uw w w w

21-bit scalar

High surrogate Low surrogate

Byte Order Mark
(BOM)

• U+FEFF written at the start of a data
stream

• U+FFFE guaranteed to be unassigned

• If a UTF-16 data stream starts with 0xFFFE,
swap bytes

• Also considered an encoding signature or
magic number for UTF-16

UTF-8 – One Encoding
to Rule Them All

• 8-bit code units

• A character is encoded as 1…4 bytes

• Invented by Ken Thompson
(Yes, that Ken Thompson)

• “Is UTF-8 a racist kludge or a stroke of
genius?” – Tim Bray

0 x x x x x x x

UTF-8 Byte Sequences

1 0 x x x x x x

1 1 0 x x x x x

1 1 1 0 x x x x

1 1 1 1 0 x x x 1 0 x x x x x x1 0 x x x x x x

1 0 x x x x x x1 0 x x x x x x

1 0 x x x x x x

Racist Kludge?

• Compared to UTF-16…

• English text shrinks by 50%

• Asian text expands by 50%

• The status of ASCII is a historical reality

• Not a real technical problem: Use gzip!

• One ideograph vs. many alphabetic letters

Stroke of Genius?

• ASCII is ASCII (one byte per character)

• Including control characters!

• Other characters don’t overlap with ASCII

• No byte order issues

• Byte-wise lex sort = code point lex sort

• Implemented using bitwise operations –
no multiplication, division or look-up tables

• \0 termination

• Unix file system compatibility

• Retrofitting text terminals with Unicode

• Works over SMTP without Base64

• Byte-oriented parsing of grammars where
non-ASCII occurs only in string literals

Benefits of ASCII
Identity of UTF-8

UTF-8 Disadvantages

• No O(1) random access by character index

• Not such a big deal

• Doesn’t work with UTF-16, either, in the
presence on astral characters

• Harder to look inside a string than with
UTF-16

• Space requirement for Asian text

Other Unicode
Encoding Schemes

• UTF-7

• RFC 2152; obsolete email encoding

• CESU-8

• Formalization of broken UTF-8

• Punycode

• RFC 3492; only for IDNs

Compressed
Representations

• SCSU

• Not deterministic

• BOCU-1

• MIME text/* compatible

• Byte-wise lex sort = code point lex sort

• Deterministic

Dealing with Encodings

• Unicode is designed to be round-trip
compatible with legacy encodings

• Legacy encodings can easily be converted
to Unicode

Encodings on Input

• Convert input into your internal Unicode
encoding form at the first opportunity

• When dealing with XML, let the XML
processor do this for you

Encodings on Output:
XML

• XML processors are required to support
two encodings: UTF-8 and UTF-16

• Using any other encoding takes more
work and is unsafe

• Use explicit XML declaration with UTF-8

• Use xml:lang for CJK disambiguation

• Don’t use text/xml; use application/xml

Encodings on Output:
HTML

• Use UTF-8

• The only serious browser in recent
memory that does not support UTF-8 is
Opera 5

• Even Netscape 4 and Lynx support UTF-8

Encodings on Output:
text/plain Mail

• The lazy way: Use UTF-8

• Tell pine users to install the iconv patch

• The compatible way: Adaptive encoding

• Try ASCII, ISO-8859-1, Windows-1252…

• UTF-8 as last resort

• Always declare the encoding properly

Normalization and IO

• Unless otherwise required by protocol, use
NFC for output

• To be safe, normalize input data to your
required form yourself

C

• \0-terminated UTF-8 strings

• Preferred by Gnome libraries

• Smuggling Unicode through legacy code

• 0x0000-terminated UTF-16 strings

• Preferred by APIs from Apple, Microsoft
and IBM

UTF-16 in C

• wchar_t not portable

• Can be 1, 2 (MS) or 4 (GNU) bytes wide

• Everyone has a typedef for UTF-16

• UniChar, UChar, gunichar2, PRUnichar, …

String Tools for C

• ICU from IBM

• glib

• CoreFoundation

C APIs for Imaging

• ATSUI (Mac OS X)

• Pango aka. Παν語 (Gnome)

• Uniscribe (Windows)

C APIs for Imaging,
continued

• Handle hit testing / selection / caret
movement on behalf of the app

• At their best when driven with paragraph-
sized chunks

• Problematic with apps that expect to do
almost everything themselves

C++

• No universally accepted Unicode string
class library (as usual with C++…)

• C-style UTF-8 or UTF-16 strings needed as
common ground between libraries

Java

• Originally assumes character = 16 bits
(“Wide ASCII” mindset in API design)

• Treat Strings and char[]s as UTF-16

• Normalization and other cool tools
available in ICU4J by IBM

• Never trust the platform default encoding!
Know what encoding you are using for IO!

C#

• Strings are indexed by UTF-16 code units
as in Java

JavaScript

• Strings are indexed by UTF-16 code units
as in Java

Objective-C (on OS X)

• NSStrings are indexed by UTF-16 code
units as in Java

• NSString provides methods for
normalization

• Comparison considers canonical
equivalence

Python

• Byte strings and Unicode strings since
Python 2.0

• UTF-16 or UTF-32 depending on how the
interpreter was compiled! (Cf. PEP 261)

• UTF-16: Jython, Apple

• UTF-32: Debian

Perl

• Byte and Unicode strings since Perl 5.6

• Avoid versions earlier than Perl 5.8

• Strings are indexed by UTF-32 code units

• Normalization in Unicode::Normalize

• Character class & name data

AppleScript

• Legacy MacRoman strings (string)

• UTF-16 strings (Unicode text)

• Badly documented and supported

• Script Editor can’t display astral chars

• “International Text” means locale-specific
legacy Mac encodings

PHP4

• No notion of a Unicode string

• Strings are byte strings (can hold UTF-8)

• No supporting library functions by default,
either

• Optional iconv and mb_ functions

Don’t Trust the
Documentation

• “Unicode character” in API docs often
means a UTF-16 code unit

• Even when docs say “UCS-2”, UTF-16 may
be supported

• When docs say “UTF-8”, the
implementation may use CESU-8

• Always test with astral chars yourself!

References

• http://www.unicode.org/standard/WhatIsUnicode.html

• http://www.unicode.org/versions/Unicode4.0.1/

• http://www.unicode.org/reports/tr15/

• http://www.omniglot.com/

• http://www.tbray.org/ongoing/When/200x/2003/04/26/UTF

• http://www.microsoft.com/globaldev/DrIntl/columns/015/default.mspx

• http://developer.apple.com/fonts/WhitePapers/GXvsOTLayout.html

• http://www.microsoft.com/opentype/otspec/default.htm

• http://developer.gnome.org/doc/API/2.0/glib/.html

• http://oss.software.ibm.com/icu/

• http://oss.software.ibm.com/icu4j/

• http://www.pango.org/

• http://developer.apple.com/intl/atsui.html

• http://www.microsoft.com/typography/developers/uniscribe/default.htm

• man perlunicode

• man perluniintro

• http://developer.apple.com/documentation/AppleScript/Conceptual/AppleScriptLangGuide/AppleScript.37.html

