
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Laboratory of Software Technology

Henri Sivonen

An HTML5 Conformance Checker

Master’s Thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Technology.

Helsinki, 7 May 2007

Supervisor and Instructor: Professor Jorma Tarhio

© 2006–2007 Henri Sivonen

Digital versions of this thesis (including the source files) may be obtained from:
http://hsivonen.iki.fi/thesis/

This literary work (“Work”) is licensed under the Creative Commons Attribution-
ShareAlike license version 2.5 or later (“License”). The license text is available from
http://creativecommons.org/licenses/by-sa/2.5/.

You may have received the Work aggregated in a digital file or on a tangible
medium together with a Creative Commons license badge graphic and/or the
“wing” emblem of Helsinki University of Technology, and/or you may have received the Work in a digital file
that contains embedded fonts. The license badge, the “wing” emblem and the embedded fonts are not part of
the Work and are not covered by the License. For avoidance of doubt, when the Work or a Derivative Work is
distributed as a file containing embedded fonts (e.g. PDF) or as a markup document accompanied by external
style definitions and the markup document can be intelligibly rendered using the default style definitions of
typical rendering software (e.g. semantic HTML or LATEX using standard macro names), the embedded fonts or
the accompanying external style definitions are not considered to be subject to the ShareAlike provision of the
License by the Licensor and are not required to be licensed under the License.

The Licensor believes that the license badge, the “wing” emblem and the embedded fonts do not encumber
exercising the rights granted under the License for distribution of verbatim copies of the Work. However, if you
create a Derivative Work, please ensure that you are permitted to use the elements that are not covered by the
License or delete the elements if in doubt.

Please refer to http://creativecommons.org/policies for information about the use of the license badge. If
you have inquiries about the “wing” emblem, please contact Helsinki University of Technology.

If you create a Derivative Work, please make it clear that it is not the original version and that your modific-
ation were not made by the original author. In addition, please do not call a Derivative Work a master’s thesis
written at Helsinki University of Technology. Saying that the Derivate Work is based on a master’s thesis written
at Helsinki University of Technology would be appreciated, though.

ii

http://hsivonen.iki.fi/thesis/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/policies
http://www.tkk.fi/

Author: Henri Sivonen
Department: Computer Science and Engineering
Major: Software Systems
Minor: Strategy and International Business
Title of the thesis: An HTML5 Conformance Checker
Number of pages: xiv + 108
Date: 7 May, 2007
Professorship: T-106 Software Technology
Supervisor: Professor Jorma Tarhio
Instructors: Professor Jorma Tarhio
The Web Hypertext Application Technology Working Group (WHATWG) is de-
veloping HTML5 and its parallel XML version, XHTML5, as successors for HTML
4.01 and XHTML 1.0. An (X)HTML5 conformance checker is expected to take the
role that DTD-based validators have had with earlier (X)HTML. Conformance
checking goes beyond the capabilities of DTDs. The WHATWG does not prescribe
an implementation strategy for conformance checkers and does not endorse
schema languages.

Realizing that no schema language is adequate for describing the conformance
requirements for (X)HTML5, a mainly RELAX NG-based implementation ap-
proach was chosen nonetheless for this project. In this project, the bulk of the
(X)HTML5 language is described as a RELAX NG schema that is supported by a
custom datatype library written in Java. A Schematron schema is used alongside
RELAX NG for enforcing constraints for which RELAX NG is not suitable. The re-
maining requirements are enforced by custom code written in Java. For checking
HTML5, which is a language on its own and is not an SGML or XML vocabulary,
a special-purpose parser was developed so that the XML tools can work on
XHTML5-like parse events.

The design of the system is discussed and found to be successful. The ease of
expressing and changing the grammar is identified as the main benefit of RELAX
NG. The inability to easily fine-tune error messages is identified as a drawback.
Schematron is found to be more suitable than RELAX NG for expressing exclu-
sions and referential integrity constraints. A checker for checking the integrity of
HTML tables is presented as the main example of a non-schema-based checker
implemented in Java.
Keywords: HTML5, conformance checking, HTML, validation,

XHTML, XML, WHATWG, RELAX NG, Schematron, SAX,
Web

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER’S THESIS

iii

Tekijä: Henri Sivonen
Osasto: Tietotekniikka
Pääaine: Ohjelmistojärjestelmät
Sivuaine: Yritysstrategia ja kansainvälinen liiketoiminta
Työn nimi: HTML5-konformanssitarkistin
Sivumäärä: xiv + 108
Päiväys: 7. toukokuuta 2007
Professuuri: T-106 Ohjelmistotekniikka
Työn valvoja: Professori Jorma Tarhio
Työn ohjaajat: Professori Jorma Tarhio
Web Hypertext Application Technology Working Group (WHATWG) kehittää
HTML5:tä ja sen rinnakkaista XML-versiota, XHTML5:tä, HTML 4.01:n and
XHTML 1.0:n seuraajiksi. (X)HTML5-konformanssitarkistimen odotetaan ottavan
rooli, joka DTD-pohjaisilla validaattoreilla on ollut aiemman (X)HTML:n kohdal-
la. Konformanssitarkistus menee DTD:iden kykyjä pidemmälle. WHATWG ei
määrää toteutusstrategiaa konformanssitarkistimille eikä tue mitään skeemakieliä.

Vaikka mikään skeemakieli ei ole riittävä kuvaamaan (X)HTML5:n konfor-
manssivaatimuksia, pääasiassa RELAX NG -pohjainen toteutustapa valittiin tähän
projektiin siitä huolimatta. Tässä projektissa valtaosa (X)HTML5-kielestä kuva-
taan RELAX NG-skeemana, jota tukee Javalla kirjoitettu räätälöity datatyyppikir-
jasto. Schematron-skeemaa käytetään RELAX NG:n ohella valvomaan rajoitteita,
joihin RELAX NG ei sovellu. Jäljelle jääviä rajoitteita valvotaan räätälöidyllä Java-
koodilla. HTML5:n, joka on itsenäinen kieli eikä SGML- tai XML-sanasto, tarkista-
miseen kehitettiin tätä tarkoitusta varten jäsennin, jotta XML-työkalut voivat
kuunnella XHTML5:n kaltaisia jäsennystapahtumia.

Järjestelmän suunnitteluratkaisuja käsitellään ja ne todetaan onnistuneiksi.
Kieliopin ilmaisemisen ja muuttamisen helppous tunnistetaan RELAX NG:n pää-
eduksi. Kykenemättömyys virheilmoitusten helppoon hienosäätöön tunnistetaan
haitaksi. Schematron todetaan RELAX NG:tä soveltuvammaksi ekskluusioiden ja
viite-eheysrajoitteiden ilmaisuun. Tarkistin HTML-taulukoiden eheyden tarkista-
miseen esitellään pääesimerkkinä Javalla toteutetusta ei-skeemapohjaisesta
tarkistimesta.
Avainsanat: HTML5, konformanssitarkistus, HTML, validointi, XHTML,

XML, WHATWG, RELAX NG, Schematron, SAX, Web

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

iv

Acknowledgements

This Master’s thesis has been written at the Laboratory of Software Technology of
Helsinki University of Technology.

I want to thank Ian Hickson for all his work on HTML5, without which this
thesis would not exist.

I wish to thank Elika Etemad (fantasai) for developing the core RELAX NG
schema for HTML5, for letting me build upon the schema, for reviewing and com-
menting on my changes to the schema, and for reviewing drafts of this thesis.

I would also like to thank the Mozilla Foundation for funding this project and
Frank Hecker of the Mozilla Foundation for supporting this project.

I want to thank James Clark for developing the Jing validation engine that the
software developed in this project is based on.

My gratitude also goes to members of the #turska and #whatwg IRC channels
as well as the members of the WHATWG mailing list.

I would like to thank YesLogic Pty. Ltd., SyncRO Soft Ltd. and Oskar Ojala for
software that I used to make this thesis publishable.

I wish to thank my instructor and supervisor professor Jorma Tarhio.
Finally, I would like to thank my family.

Helsinki, 7 May 2007
Henri Sivonen

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Methods . 2
1.4 Availability of the Software . 3
1.5 Organization of this Thesis . 3

2 History of HTML Leading to HTML5 5
2.1 Early HTML . 5

2.1.1 Initial HTML at CERN . 5
2.1.2 The IIIR Draft . 6
2.1.3 HTML+ . 6
2.1.4 HTML 2.0 . 7
2.1.5 HTML 3.0 . 8
2.1.6 HTML 3.2 . 8

2.2 Contemporary HTML . 9
2.2.1 HTML 4 . 9
2.2.2 ISO HTML . 10
2.2.3 XHTML 1.0 . 10
2.2.4 Modularization . 11

2.3 HTML5 . 12
2.3.1 The Mozilla/Opera Joint Position Paper 13
2.3.2 The WHATWG is Formed . 14
2.3.3 The WHATWG Specifications 14

3 Schema Languages 17
3.1 DTDs . 17

3.1.1 Infoset Augmentation . 18
3.1.2 Datatyping . 19
3.1.3 Other Problems with DTDs 19

3.2 W3C XML Schema . 19
3.3 Document Structure Description . 20
3.4 TREX, RELAX, XDuce and DDML 21
3.5 RELAX NG . 21

3.5.1 Datatyping . 21
3.5.2 Compact Syntax . 22
3.5.3 Use in This Project . 23

vi

3.6 Schematron . 23
3.6.1 Using RELAX NG and Schematron Together 23
3.6.2 Use in This Project . 24

4 Prior Work on Markup Checking 25
4.1 The W3C Markup Validation Service 25
4.2 WDG HTML Validator . 26
4.3 Page Valet . 26
4.4 The Schneegans XML Schema Validator 27
4.5 Relaxed . 28
4.6 The Feed Validator . 29
4.7 Validome . 29

5 Implementation 31
5.1 The SAX API . 31
5.2 The HTML Parser . 32

5.2.1 HTML5 as an Alternative Infoset Serialization 33
5.2.2 TagSoup . 33
5.2.3 Parser Design . 34
5.2.4 Minor Problems . 34

5.3 Front End . 35
5.4 Back End Design . 36
5.5 The Jing Validation Engine . 37
5.6 The RELAX NG Schema . 38

5.6.1 The General Schema Design 39
5.6.2 Common Definitions . 39
5.6.3 Examples of Elements . 42

5.7 The HTML5 Datatype Library . 43
5.7.1 Dates . 44
5.7.2 IRIs . 44
5.7.3 Language Tags . 45
5.7.4 ECMAScript Regular Expressions 46

5.8 The Schematron Schema . 46
5.8.1 Exclusions . 46
5.8.2 Required Ancestors . 47
5.8.3 Referential Integrity . 47

5.9 The Non-Schema-Based Checkers . 49
5.9.1 Table Integrity Checker . 49
5.9.2 Checking the Text Content of Specific Elements 52
5.9.3 Checking for Significant Inline Content 53
5.9.4 Unicode Normalization Checking 53

5.10 Character Model Checking . 55
6 Shortcomings 57

6.1 Non-Ideal Error Messages . 57
6.1.1 Bimorphic Content Models . 57
6.1.2 Lack of Datatype Diagnostics 58
6.1.3 Erroneous Source Is Not Shown 58

CONTENTS vii

6.2 Poor Localizability . 58
6.3 Opportunities for Optimization . 59

6.3.1 RELAX NG . 59
6.3.2 Schematron . 60

7 Applicability in Other Contexts 63
7.1 Auto-completion . 63
7.2 Content Management Systems . 63

8 Future Work 65
8.1 Open Up . 65
8.2 The HTML5 Parsing Algorithm . 65
8.3 Tracking the Specification . 66
8.4 RELAX NG Message Improvements 66
8.5 Completion of the Datatype Library 67
8.6 More Non-Schema-Based Checkers 67
8.7 Assistance for Checking Human-Checkable Requirements 68
8.8 Web Service . 68
8.9 Embedded MathML and SVG . 69
8.10 Showing the Erroneous Source Markup 69

9 Conclusions 71
9.1 Correct Expectations . 71
9.2 Incorrect Expectations about RELAX NG 71
9.3 Unexpected Discoveries about Schematron 72
9.4 Overall Assessment . 72

References 73
Appendix: Table Integrity Checker 93

viii AN HTML5 CONFORMANCE CHECKER

Glossary

API 31
Application Programming Interface, a convention for accessing the
functionality provided by a program module.

ASCC 23
Academia Sinica Computing Centre, the birthplace of Schematron.

ASCII 53
American Standard Code for Information Interchange, a 7-bit character
encoding.

Character 7
An atomic semantic component of text.

Character encoding 7
A way to encode a sequence of code points as a sequence of bytes.

Character set 7
A collection of characters with a code point assigned to each character
(strictly a coded character set).

Code point 21
An integer that identifies a character.

Code unit 54
A cluster of bits treated as a unit in a character encoding.

Conformance checking 2
The process of checking whether a document satisfies the conformance
criteria given in the specification for the language the document is expressed
in.

Conforming 2
Satisfying the conformance criteria given in the applicable specification.

CSS 9
Cascading Style Sheets, the style sheet language of the Web.

DDML 21
Document Definition Markup Language, a schema language for XML that
was abandoned in favor of the XSD.

Document tree 33
The tree structure embodied in the syntax of an HTML or XML document
which can be parsed from the syntax and represented as a concrete data
structure.

ix

DOM 16
Document Object Model, an API and the associated data model for
representing HTML and XML document trees.

DSD 20
Document Structure Description, a schema language for XML.

DSDL 21
Document Schema Definition Language, a family of ISO standards that
define schema languages for XML (including RELAX NG and ISO
Schematron).

DTD 17
Document Type Definition, the built-in schema language of SGML and XML.

GML 6
Generalized Markup Language, IBM’s predecessor to SGML.

HTML 5
HyperText Markup Language, the language most Web pages are expressed
in.

HTML5 14
HyperText Markup Language 5, a new version of HTML drafted by the
WHATWG.

HTTP 59
Hypertext Transfer Protocol, the primary transfer protocol of the Web.

IANA 45
Internet Assigned Numbers Authority, an organization that maintains
registries of Internet media types, language tags, IRI schemes, etc.

IBM 6
International Business Machines, a corporation.

IE 14
Internet Explorer, Microsoft’s Web browser.

IETF 6
Internet Engineering Task Force, a stardardization organization for Internet
technologies.

IIIR 6
Integration of Internet Information Resources, an IETF working group that
published an early draft specification for HTML.

Infoset 18
The information structure embodied in an XML document, a formalization
of the document tree.

IRI 44
Internationalized Resource Identifier, a network resource addressing scheme
that allows Unicode characters (as opposed to mere ASCII).

ISO 10
International Organization for Standardization, a standardization
organization.

JSP 28
JavaServer Pages, a way of mixing markup literals and Java code.

x AN HTML5 CONFORMANCE CHECKER

Markup language 1
A computer language that contains machine-readable annotations (markup)
to human-readable text.

MSV 28
Sun Multi-Schema Validator, a validation engine for RELAX NG and some
other schema languages for XML.

OASIS 21
Organization for the Advancement of Structured Information Standards, an
XML-oriented standardization organization.

PDA 12
Personal Digital Assistant, a product class of portable computing devices.

PSVI 20
Post-Schema Validation Infoset, the infoset of an XML document augmented
with datatype information as the result of XSD validation.

RELAX 21
Regular Language description for XML, a schema language for XML which
together with TREX was used as the basis of RELAX NG.

RELAX NG 21
A grammar-based schema language for XML.

REST 64
Representational State Transfer, an architechtural style for distributed
systems embodied in the design of HTTP.

RFC 6
Request for Comments, a numbered memorandum published by the IETF.

SAX 31
Simple API for XML, a de facto standard parse event-based API through
which an XML parser reports the infoset of the parsed XML document to an
application as callbacks.

Schema 17
A formal definition (expressed in a schema language) that partitions the set
of all possible XML documents into two disjoint sets so that each document
is in either set: documents that are valid according to the schema and
documents that are not valid according to the schema.

Schema language 17
A computer language for expressing a schema.

Schematron 23
An assertion-based schema language for XML.

SGML 5
Standard Generalized Markup Language, a syntax framework for defining
markup languages.

SVG 13
Scalable Vector Graphics, an XML language for representing
two-dimensional vector graphics.

GLOSSARY xi

TREX 21
Tree Regular Expressions for XML, a schema language for XML which
together with RELAX was used as the basis of RELAX NG.

Unicode 53
The universal coded character set.

UTF-8 53
Unicode Transformation Format with 8-bit code units, the preferred
character encoding for information interchange.

UTF-16 54
Unicode Transformation Format with 16-bit code units, the character
encoding used for strings in Java.

UTF-32 54
Unicode Transformation Format with 32-bit code units, a character encoding
where a single Unicode code point is always encoded as a single code unit.

W3C 8
World Wide Web Consortium, an industry consortium that publishes
specifications for World Wide Web technologies.

Valid 17
Satisfying a schema.

Validation 17
The process of checking if a document is valid according to a schema.

WDG 26
Web Design Group, a group that offers materials and tools (a validator, in
particular) related to HTML.

WHATWG 14
Web Hypertext Application Technology Working Group, a collaborative
group of browser vendors, Web developers and other interested parties that
works on the next generation of HTML.

WXS 19
W3C XML Schema, a schema language for XML.

XHTML 10
Extensible HyperText Markup Language, HTML reformulated as an XML
language.

(X)HTML 12
(Extensible) HyperText Markup Language, a catch-all term for both HTML
and XHTML.

XHTML5 14
XML serialization of HyperText Markup Language 5, the XML language
defined in parallel with HTML5.

(X)HTML5 14
(XML serialization of) HyperText Markup Language 5, a catch-all term for
both HTML5 and XHTML5

XML 10
Extensible Markup Language, a syntax framework for defining markup
languages, a stand-alone simplification of SGML.

xii AN HTML5 CONFORMANCE CHECKER

XSD 19
XML Schema Definition, the filename extension for and, consequently, the
common way to refer to W3C XML Schema.

XSLT 28
Extensible Stylesheet Language Transformations, a programming language
designed for transforming XML documents into different XML documents.

GLOSSARY xiii

Chapter 1

Introduction

The Web Hypertext Application Technology Working Group (WHATWG) is devel-
oping HTML5 and its parallel XML version, XHTML5, as successors for HTML 4.01
and XHTML 1.0. HTML5 and XHTML5 are defined by the combination of
WHATWG’s Web Applications 1.0 [WebApps] and Web Forms 2.0 [WebForms2] spe-
cifications. To be successful, a new markup language not only needs support from
browsers, it also needs tools that support authoring. Authoring-side tools include
editors, content management systems and quality assurance tools for checking the
correctness of markup. This thesis focuses on the last.

1.1 Motivation
Web authors tend to make mistakes when writing HTML. The vast majority of
HTML documents on the Web are syntactically incorrect. A test of the HTML5 pars-
ing algorithm on several billion documents spidered by Google indicated that 93%
of documents had errors on the lowest levels of the syntax [Several]. (Documents in
the remaining 7% may well have higher-level errors that are not found by the pars-
ing algorithm and would require a full conformance checker to find.)

Even though most Web content is broken without hope of repair and browsers
will do something with any input purporting to be HTML, it is still useful to provide
a quality assurance tool for authors. Even if browsers adopt the well-defined error-
recovering processing models of HTML5, authors generally do not make errors on
purpose in order to elicit particular error recovery response. Silent recovery from
inadvertent mistakes – even if deterministic and well defined – may still confuse an
author who did not mean to invoke error recovery. The issue becomes more appar-
ent when an author uses a style sheet or a script that assumes the document to be
correct. Therefore, it is worthwhile to provide a conformance checker that helps au-
thors find their mistakes.

1

1.2 Objectives
The functional objective of the project described in this thesis was developing a par-
tial (X)HTML5 conformance checker that is comprehensive enough to demonstrate
that it can be taken to completion once (X)HTML5 itself has stabilized. The research
goals were 1) finding out if a hybrid implementation based both on schemata and
on custom code developed in a general-purpose programming language is feasible
and 2) finding out if an XML toolchain can be successfully applied to checking the
non-XML serialization of HTML5. Only markup checking without executing scripts
is considered due to the halting problem [Computable].

1.3 Methods
For HTML 4.01 and XHTML 1.0, validators based on Document Type Definitions
(DTDs), the built-in schema language of SGML and XML, have traditionally been
used as the quality assurance tools for checking correctness even though they do
not check for all machine-checkable conformance requirements. For (X)HTML5, a
conformance checker is expected to take the role that DTD-based validators have
had with earlier (X)HTML. Conformance checking goes beyond the capabilities of
DTDs.

The WHATWG does not prescribe an implementation strategy for conformance
checkers and does not endorse schema languages. Not only are schema languages
unendorsed but also they are seen as being clearly inadequate. Therefore, a non-
schema-based implementation strategy is implied. Yet, as an initial impression,
abandoning schemata altogether just because they cannot be used for checking
every machine-checkable constraint seems overly drastic. Hence, I chose a hybrid
approach that uses schemata for what they are good for and uses a non-schema-
based implementation strategy for what schemata are not good for.

I chose RELAX NG as the primary schema language, and Schematron as a sup-
porting schema language. Using RELAX NG for document-oriented schemata (as
opposed to databinding-oriented schemata) had gained acceptance as the best prac-
tice among users of XML schema languages. Schematron had gained popularity as
a language for refining RELAX NG schemata. Elika Etemad had already started a
project for developing a RELAX NG schema for HTML5 [HTML5RNG]. Moreover,
I had already developed a service that allows Web users to validate XML docu-
ments against arbitrary RELAX NG and Schematron 1.5 schemata [Validat-
orAbout]. I had developed the service in the Java programming language due to the
excellent availability of XML tools for Java. I chose Etemad’s schema project and the
service I had already developed as starting points for this thesis project. Since I had
written my pre-existing software in Java, it followed that I would also write the
new non-schema code in Java.

The parsed syntax tree for HTML5 and the parsed syntax tree for XML are very
similar. Since reusable tools exist for XML, I decided to use XML tools and to map
HTML5 documents to equivalent XHTML5 representations in the parser. To this

2 AN HTML5 CONFORMANCE CHECKER

end, I wrote an HTML parser (page 32) that acts as if it were an XML parser parsing
XHTML.

1.4 Availability of the Software
The generic validation service that I used as the basis of the conformance checker is
usable online at http://hsivonen.iki.fi/validator/.

The work I did in order to add HTML5 support to the generic validation service
included:
• an HTML parser (page 32)
• significant work on a RELAX NG schema for (X)HTML5 (page 38)
• a Schematron schema complementing the RELAX NG schema (page 46)
• a RELAX NG datatype library for HTML5 datatypes (page 43)
• non-schema-based checkers for requirements that schemata cannot express

(page 49)
The software I developed is Free Software / Open Source. The source code may be
obtained by following links from http://hsivonen.iki.fi/validator-about/.

The product of this thesis project is usable online at http://hsivonen.iki.fi/
validator/html5/.

1.5 Organization of this Thesis
This thesis has two thematic parts. The first part (the next three chapters) reviews
the context of this work. HTML5 is placed in historical context, schema languages
for XML are reviewed and prior work on online markup checking services is re-
viewed. The second part (the last five chapters) focuses on the software implemen-
ted in this project. The implementation of the software, its shortcomings, and its ap-
plicability to other contexts are discussed. Finally, the need for future work is re-
viewed and the conclusions given.

CHAPTER 1. INTRODUCTION 3

http://hsivonen.iki.fi/validator/
http://hsivonen.iki.fi/validator-about/
http://hsivonen.iki.fi/validator/html5/
http://hsivonen.iki.fi/validator/html5/

Chapter 2

History of HTML Leading to HTML5

This chapter reviews the history of Hypertext Markup Language (HTML) leading
to HTML5.

HTML is, in principle, a semantic markup language. That is, it encodes, for ex-
ample, that a particular piece of text is a heading as opposed to encoding the exact
presentation. HTML has never been only about presentation and has never been
only about encoding the profound semantics of text. The positioning of HTML
somewhere in between these extremes has shifted in both directions with different
versions.

Since one of the major changes in HTML5 is the way the specification deals with
parsing and the stance the specification takes with respect to Standard Generalized
Markup Language (SGML [ISO8879]), each version of HTML prior to HTML5 is
summarized in terms of the key features introduced and in terms of the stated rela-
tionship to SGML or XML (Extensible Markup Language [XML]). SGML is a syntax
framework for defining markup languages. XML is a simplification of SGML.
SGML and XML define the parsing layer of markup language processing.

2.1 Early HTML
In this review, HTML versions prior to HTML 4 are considered “early”, as they are
no longer in active use when new documents are created.

2.1.1 Initial HTML at CERN
Tim Berners-Lee invented the Web in 1989. He released the first version of his
browser in 1990 [Raggett]. The system used HTML, but the language was not form-
ally specified at first. Tim Berners-Lee designed HTML using ideas from SGML
[Weaving]. However, HTML was not layered on top of the SGML standard but
rather used a similar syntax without being a true application of SGML.

The element names available in HTML were largely taken from SGMLguid, an
application of SGML used at CERN. SGMLguid, in turn, was similar to Waterloo

5

SCRIPT GML [WaterlooGML], a GML language specified at University of Water-
loo. (GML [Generalized] was IBM’s predecessor to SGML.) [EarlyHistory] There are
also similarities with the language given in the tutorial of the SGML standard
[ISO8879].

2.1.2 The IIIR Draft
Tim Berners-Lee and Dan Connolly wrote an Internet Draft specification for HTML
as part of the activity of the Integration of Internet Information Resources (IIIR)
working group of the Internet Engineering Task Force (IETF). The Internet Draft
was published in June 1993. [IIIR-HTML]

The draft said that HTML was defined in terms of SGML. However, the specific-
ation did not specify an HTML document as a conforming SGML document entity
but instead said how to construct an SGML document from an HTML file [IIIR-
HTML]. The draft also suggested that an HTML parser would not need to be a full
SGML parser but a parser that only deals with the document instance after the DTD
[IIIR-HTML]. W. Eliot Kimber, an SGML expert, challenged the purity of the draf-
ted HTML approach in terms of SGML [ToBeDeleted]. The stated approach was
changed in later specifications to make an HTML file directly an SGML document.
However, browsers continued to use special-purpose parsers (as opposed to SGML
parsers) as before. The mailing list discussions about the relationship of HTML to
SGML are summarized in [Cascading].

The IIIR draft already included the IMG element for images. The P element was
defined as an empty element that indicates paragraph breaks. As an interesting de-
tail, the XMP, LISTING and PLAINTEXT elements for including verbatim text in
HTML were considered obsolete as early as the IIIR draft (although they would still
show up in the HTML5 parsing algorithm over a decade later [WebApps]).
[IIIR-HTML]

The draft expired and did not reach the RFC status.

2.1.3 HTML+
Dave Raggett, one of the participants of the www-talk for discussing Web matters,
visited Tim Berners-Lee at CERN to discuss further development face to face. Based
on the discussion, Raggett drafted a new version of HTML called HTML+.
[Raggett]

The draft specification for HTML+, published in late 1993, specifically stated
that HTML+ was “based on the Standard Generalized Markup Language”. It also
had a Document Type Definition (DTD), a formal grammar expressed using the
built-in schema language (page 17) of SGML. In theory, having a DTD enabled the
use of SGML parsers. However, the draft implied that there would be “HTML+
parsers” which would be different from “other SGML parsers”. HTML+ explicitly
excluded SGML minimization features. It used the P element as a paragraph

6 AN HTML5 CONFORMANCE CHECKER

container but said that authors may think of the P tag as a paragraph separator.
[HTMLplus]

HTML+ had a number of elements that never entered into actual usage, such as
BYLINE, ONLINE, PRINTED, and ABSTRACT. As a curious detail, HTML+ included
an element called IMAGE, which used the element content as the alternative text – a
feature that would still be discussed over a decade later. HTML+ attempted to ad-
dress the issue of mathematical formulae, but the coverage of types of formulae
was not particularly comprehensive. [HTMLplus]

HTML+ defined markup for tables. The table markup is roughly what was later
adopted in HTML 4. HTML+ also defined markup for forms similar to what was
actually adopted in browsers. However, the field types also included types that
were not adopted, such as URL, DATE and SCRIBBLE (for drawing). [HTMLplus]

Mainstream browsers never adopted HTML+. However, at the first World Wide
Web conference it was agreed that the ideas from HTML+ should be carried for-
ward. [Raggett]

2.1.4 HTML 2.0
Dan Connolly had advocated a cross-browser HTML specification at the first World
Wide Web conference in early 1994. Subsequently, the IETF formed a working
group to specify HTML. The working group – with Connolly in the lead – defined
HTML 2.0 based on the then-current practice. The HTML 2.0 draft was published in
July 1994. [Raggett]

The HTML 2.0 specification reached the RFC status in November 1995. The spe-
cification stated that “HTML is an application of ISO Standard 8879:1986 Informa-
tion Processing Text and Office Systems; Standard Generalized Markup Language
(SGML).” [RFC1866] However, it was too late to make browsers use SGML parsers.
Instead, browsers continued to use special-purpose HTML parsers without stand-
ardized error recovery behavior. HTML 2.0 included a DTD, but the DTD was of no
interest to browsers.

Unlike the elements proposed in HTML+, the elements of HTML 2.0 were (and
still are) actually supported by browsers. HTML 2.0 included forms but did not in-
clude tables, which had been proposed in HTML+. Regardless, Netscape imple-
mented tables in its browser in the HTML 2.0 era and made tables popular.

HTML 2.0 established that the document character set of HTML is ISO 10646 re-
gardless of the character encoding used to transfer the document. (The character al-
locations in ISO 10646 track the allocations of Unicode [ISO10646][Unicode].)
However, the internationalization of HTML 2.0 was not fully addressed in the
HTML 2.0 specification itself, and a standards track RFC that extended HTML 2.0 to
address internationalization issues was published in late 1997 [RFC2070].

CHAPTER 2. HISTORY OF HTML LEADING TO HTML5 7

2.1.5 HTML 3.0
To keep the Web unified amidst product development by various competing
vendors, an industry consortium called The World Wide Web Consortium (W3C)
was founded in 1994 to develop specifications for the Web. [Weaving]

Dave Raggett – this time representing the W3C – edited a specification called
HTML 3.0, which carried forward the ideas of HTML+ [Raggett]. To support the
use of style sheets, HTML 3.0 introduced the STYLE element and the CLASS attrib-
ute, which lived on in HTML 4 [Raggett]. An HTML 3.0 draft was published
through the IETF as an Internet Draft [HTML30].

Meanwhile, Netscape extended HTML on its own. In particular, its extensions
included presentational features instead of adopting style sheets.

HTML 3.0 did not match what was being implemented in browsers. The draft
specification was abandoned and never reached the RFC status [Raggett]. Even
though HTML 3.0 as a whole was dropped, a specification for HTML tables (as an
extension to HTML 2.0) was published as an experimental RFC. [RFC1942]

2.1.6 HTML 3.2
In November 1995, representatives of browser vendors and the W3C formed an
HTML working group at the W3C. The following month, the IETF HTML working
group was disbanded. [Raggett]

In January 1997, the W3C published the specification for HTML 3.2 as a Recom-
mendation. Unlike HTML 3.0, HTML 3.2 documented actual practice that had
grown as extensions to HTML 2.0. The specification itself stated: “HTML 3.2 aims
to capture recommended practice as of early ’96 and as such to be used as a replace-
ment for HTML 2.0 (RFC 1866).” [HTML32]

HTML 3.2 continued to say that HTML was an application of SGML: “HTML 3.2
is an SGML application conforming to International Standard ISO 8879 – Standard
Generalized Markup Language. As an SGML application, the syntax of conforming
HTML 3.2 documents is defined by the combination of the SGML declaration and
the document type definition (DTD).” [HTML32] However, even the specification
itself admitted that SGML-compliance of user agents was not part of the actual
practice as of early ’96 by noting: “Note that some user agents require attribute
minimisation for the following attributes: COMPACT, ISMAP, CHECKED, NOWRAP,
NOSHADE and NOHREF. These user agents don’t accept syntax such as
COMPACT=COMPACT or ISMAP=ISMAP although this is legitimate according to the
HTML 3.2 DTD.” [HTML32]

In documenting the actual practice, HTML 3.2 included presentational features,
such as the FONT element, that would later be deprecated.

8 AN HTML5 CONFORMANCE CHECKER

2.2 Contemporary HTML
The versions of HTML discussed above are of historical interest and are not in act-
ive use for creating new documents. The versions in current use start with HTML 4.

2.2.1 HTML 4
HTML 4.0 was published as a W3C Recommendation in December 1997 [HTML40].
The specification formalized existing features that had been introduced by browser
vendors but also introduced new features of its own. HTML 4.0 was revised
without incrementing the version number, and the revision was published in April
1998 [HTML40rev]. Another revision called HTML 4.01 became a W3C Recom-
mendation in December 1999 [HTML401].

Again, the specification said, “HTML 4 is an SGML application conforming to
International Standard ISO 8879 – Standard Generalized Markup Language.”
[HTML401] Yet, the specification acknowledged the reality that user agents in gen-
eral are not conforming SGML systems: “SGML systems conforming to [ISO8879]
are expected to recognize a number of features that aren’t widely supported by
HTML user agents. We recommend that authors avoid using all of these features.”
[HTML401]

HTML 4 deprecated presentational features such as the FONT element that had
made its way to a W3C Recommendation less than a year before the first version of
HTML 4. In principle, HTML 4 tried to backpedal on the point of presentational
features to where HTML 2.0 had been – with the intent of leaving presentation to
style sheets such as Cascading Style Sheets (CSS) [Cascading], which had been pub-
lished as a W3C Recommendation [CSS1] the year before.

HTML 4 without the deprecated features was termed “Strict” and HTML 4 with
the deprecated presentational features was termed “Transitional”. In practice, the
deprecated features continue to be used nine years later even though CSS has been
very successful both in terms of acceptance by Web authors and in terms of
implementations.

HTML 4 included features for adding more structure to tables, for adding more
structure to forms, and for marking up insertions and deletions. HTML 4 adopted
the model proposed in the experimental RFC on HTML tables [RFC1942] dropping
a few presentational attributes. Internationalization features, including support for
bidirectional text (e.g. for Hebrew and Arabic), were adopted from the standards
track RFC on the internationalization of HTML [RFC2070].

HTML 4 introduced the OBJECT element, which was supposed to eventually re-
place IMG, APPLET and the Netscape EMBED elements. EMBED did not fit together
with an SGML DTD, because it could take arbitrary attributes. However, in prac-
tice, browsers continued to support EMBED, and even today browsers do not fully
support OBJECT as designed.

CHAPTER 2. HISTORY OF HTML LEADING TO HTML5 9

HTML 4 formalized frames, which had been introduced by Netscape and were
discredited [Frames] even before their inclusion in HTML 4. Additionally, HTML 4
included IFRAME from Microsoft.

2.2.2 ISO HTML
In 2000, ISO standardized its own version of HTML by referencing a subset of
HTML 4.0 as defined by the W3C but also making changes other than merely sub-
setting in the DTD [ISO15445]. A technical corrigendum changed the references to
HTML 4.01 [ISO15445TC1].

In practice, ISO HTML is only of curiosity value, since Web authors have largely
ignored it.

2.2.3 XHTML 1.0
Extensible Markup Language (XML) 1.0 [XML] was published as a W3C Recommend-
ation in February 1998 [AXML]. XML is a simplification of SGML that stands alone
without making a normative reference to SGML. Since HTML was defined as an
application of SGML and the W3C now had its own replacement for SGML, the
W3C decided to swap the markup language framework from underneath HTML.
The result was XHTML 1.0 – a reformulation of HTML 4 in XML. XHTML 1.0 be-
came a Recommendation in January 2000 [XHTML10].

XHTML 1.0 includes the features that were deprecated in HTML 4. That is,
XHTML 1.0 has three versions just like HTML 4: Strict, Transitional and Frameset.

Appendix C. To be compatible with existing HTML user agents, the XHTML 1.0
specification included compatibility guidelines commonly known as “Appendix
C”. Appendix C limits the syntactic sugar permitted by XML 1.0 so that an XHTML
1.0 document that adheres to Appendix C could be processed by existing HTML
user agents if served as text/html [RFC2854] media type. Appendix C relies on
the fact that browsers do not actually process text/html as SGML.

Appendix C made it seem that XHTML 1.0 was succeeding by being adopted
immediately. Obviously, since the browsers gained no new capabilities, using
XHTML 1.0 could not actually deliver any true benefits over HTML 4 in user agents
designed for HTML. No XML processor was involved despite the XHTML 1.0 being
a reformulation in XML. In fact, the HTML WG of the W3C gave an explicit opinion
that browsers should not try to process documents served as text/html using a
real XML processor [Sniffing].

There are experts close to the development of browser engines who have dis-
credited the practice of serving XHTML as text/html, because authors are not ac-
tually invoking any new kind of processing but end up making documents that rely
on error handling and would not work with the new kind of processing (e.g.
[Harmful] and [Understanding]).

10 AN HTML5 CONFORMANCE CHECKER

Processing as XML. Later on, Mozilla, Opera and Apple (three of the top four
browser vendors after the demise of Netscape) took the XML nature of XHTML ser-
iously and implemented support for XHTML 1.0 using a real XML processor. A real
XML processor is used when the document is served using the application/
xhtml+xml [RFC3236] media type (instead of text/html).

Serving pages as application/xhtml+xml has not become popular among
Web authors for three reasons. First, since XHTML 1.0 is a reformulation of HTML
4 on top of another markup language framework, it (alone) does not enable new in-
teresting things in the browser. This means there is not a compelling technical ad-
vantage to be gained from using XHTML 1.0 served as application/xhtml+xml
over HTML 4.01 served as text/html. Second, the browser engine with the largest
desktop market share (Trident, the engine of Microsoft’s Internet Explorer) still
does not support application/xhtml+xml. (Browser market share is difficult to
define and measure, but the global usage share of Internet Explorer is estimated to
be above 80% in early 2007 [OneStat][TheCounter].) Third, when a real XML pro-
cessor is used, an error is reported if the document violates the well-formedness
constraints of XML. Often, the document is not displayed at all if it violates these
syntactic constraints. This means that a small authoring error breaks the document
completely. In contrast when content is served as text/html, browsers try to re-
cover from markup errors.

Moreover, there are subtle differences in the ways Cascading Style Sheets
[CSS2] and the Document Object Model [DOM2] API exposed to JavaScript interact
with text/html and application/xhtml+xml. Differences involve issues such
as case-sensitivity and whether elements are in a namespace [MozFAQ]. In addi-
tion, document.write(), which allows scripts to insert data into the character
stream being parsed, does not work in XML. In practice, scripts written naïvely for
XHTML served as text/html do not work when the document is served as
application/xhtml+xml.

2.2.4 Modularization
The W3C decided to abandon the development of the old non-XML HTML and to
only develop XHTML. After the reformulation of HTML 4 in XML, which became
XHTML 1.0, the W3C HTML working group proceeded to modularize XHTML.
Modularization meant dividing XHTML into logical parts such as Hypertext Mod-
ule and Image Module and rewriting the previously monolithic DTD as multiple
files following the logical module partitioning.

The rationale for the modularization was based on a view that one size of
XHTML did not fit all client platforms. In the words of the specification itself: “This
modularization provides a means for subsetting and extending XHTML, a feature
needed for extending XHTML’s reach onto emerging platforms.” [M12N] The fore-
most “emerging platforms” were mobile phones, which were thought to be unable
to host a browser for full HTML. The rationale for modularization implicitly as-
sumes a walled garden-style world view of the owners of mobile phone networks

CHAPTER 2. HISTORY OF HTML LEADING TO HTML5 11

where a client platform design can dictate a language subset used on the network.
Such a view assumes a separate “Mobile Web”, because – quite obviously – the
World Wide Web would still use full HTML or XHTML.

XHTML Basic. XHTML Basic, published in late 2000, defines a baseline for XHTML
languages built on top of the Modularization. XHTML Basic is a subset of XHTML
1.0. The specification itself lists “mobile phones, PDAs, pagers, and settop boxes” as
target devices. [XHTMLBasic]

XHTML 1.1. XHTML 1.1 [XHTML11], published in 2001, was the first (X)HTML
specification since HTML 4 that introduced a new feature. XHTML 1.1 includes the
XHTML modules that correspond to XHTML 1.0 Strict. Additionally, XHTML 1.1
includes the XHTML Ruby Annotation module [Ruby] for expressing a type of text
annotations used in East Asia.

Microsoft’s Internet Explorer for Windows 5.0 (and later) supports a draft ver-
sion of Ruby markup when used in text/html documents [RubyIE]. However,
the most notable browsers that support application/xhtml+xml do not support
Ruby. Therefore, XHTML 1.1 has failed to make a significant practical impact.

XHTML Mobile Profile. In 2001, WAP Forum – a consortium of mobile phone
manufacturers – defined a superset of XHTML Basic called XHTML Mobile Profile
[XHTML-MP]. The profile did not follow the prescribed XHTML module
boundaries.

The specification defined application/vnd.wap.xhtml+xml as the media
type for XHTML Mobile Profile documents [XHTML-MP], but this media type has
not been officially registered. The profile has not made a notable impact on the
World Wide Web.

2.3 HTML5
The above review explains the context in which HTML5 was born.

The prior versions of HTML had officially been applications of SGML, but
browsers were actually using special-purpose HTML parsers rather than SGML
parsers. The SGML basis only gave guidance on what document tree was expected
when a document was conforming. There was no realistic specification for parsing
HTML when the input was erroneous (which it most often is). Browser vendors
had to reverse engineer the behavior of the current market leader. This has caused
interoperability problems.

Moreover, significant new features had not been introduced in years as the
work had focused on reformulating the syntax as XML. Yet, documents purporting
to use the reformulated XML syntax were still served as text/html, so browsers
kept using the same special-purpose parsers as before. The usage of
application/xhtml+xml had failed to take off.

12 AN HTML5 CONFORMANCE CHECKER

There was demand for new features for HTML and demand for the recognition
of the fact that text/html content was parsed neither as SGML nor as XML but
had a syntax of its own.

2.3.1 The Mozilla/Opera Joint Position Paper
The balance of power in the W3C had shifted from traditional desktop browser
vendors to various other interest groups such as makers of software for mobile
walled gardens and developers of “rich client” technologies that could be deployed
on intranets but that were not used by the general public on the Web. This had led
to a situation where the focus was more on the “Semantic Web”, “Web Services”
and “Mobile Web” than on what is usually considered “the Web”. As a result, the
development of the Web itself had been neglected.

In June 2004, the W3C held a workshop on Web Applications and Compound
Documents. The Mozilla Foundation and Opera Software – the two most active
browser vendors in the W3C at the time – submitted a joint position paper noting
the “rising threat of single-vendor solutions” and calling for seven principles to be
followed in the design of Web Applications Technologies [JointPosition]. (At the
time Microsoft – a notable browser vendor itself – was pushing a single-vendor
solution code named Avalon [MS-WebApps] and Apple was catching up having
entered the market only recently.)

The first one of the seven principles in the Mozilla/Opera position paper was
“Backwards compatibility, clear migration path” [JointPosition]. The transition
from HTML 4 to XHTML 1.0 had not worked out smoothly as discussed earlier
(page 10). In addition, XForms [XForms], the W3C’s successor for HTML forms, did
not provide backwards compatibility or a clear migration path. Moreover, the
HTML working group was working on XHTML 2.0 [XHTML20], which was de-
signed to be incompatible with XHTML 1.x, even though the transition to XHTML
1.x served as application/xhtml+xml was not complete.

The position paper called for well-defined error handling – something that had
never been addressed for HTML. The paper took a position in favor of graceful re-
covery (as in CSS [CSS2]) and against the Draconian error policy of XML.

The paper called for every feature to be backed by a practical use case and for
the specification process to be open. This was in contrast with including features
that are “nice to have” and making decisions on the W3C’s member-only mailing
lists.

The paper took a position against device-specific profiles. This was in direct
contrast with the Modularization of XHTML (page 11) [M12N] as well as mobile pro-
files of other W3C deliverables such as Scalable Vector Graphics (SVG [SVG]). The
paper also took a position more favorable to scripting (JavaScript [JavaScript] in
practice) than what has been the general line in the W3C.

The paper stated two design principles for compound documents (documents
that mix different XML vocabularies): “Don’t overuse namespaces” and “Migration
path”. The latter was related to the problems with the HTML to XHTML migration
discussed above. The position paper was dismissive of schema languages.

CHAPTER 2. HISTORY OF HTML LEADING TO HTML5 13

The paper went on to list specific features that a Web application host environ-
ment should provide. It made several references to XBL, which has been a very
politicized language (but is now on track to become a W3C Recommendation
[XBL2]).

2.3.2 The WHATWG is Formed
The proposal presented by Opera Software and the Mozilla Foundation was not
well received at the W3C. At the end of the second day of the workshop, a poll was
held on the topic of the joint position paper: whether the W3C should develop ex-
tensions to HTML, CSS and the DOM as proposed. Of the 51 attendees of the work-
shop, 8 voted in favor of the motion and 11 voted against. When the motion was
slightly reformulated, 14 voted against. [cdf-ws-minutes2]

Two days after the vote at the workshop, The Web Hypertext Applications
Technology Working Group (WHATWG) and its public mailing list were publicly
announced. The group was described as “a loose, unofficial, and open collaboration
of Web browser manufacturers and interested parties”. The stated intent was creat-
ing specifications for implementation in “mass-market Web browsers, in particular
Safari, Mozilla, and Opera”. [WHAT-Ann]

The initial (invite-only) membership of the WHATWG consisted of individuals
affiliated with Apple, Mozilla and Opera Software. (Ian Hickson, the editor of the
WHATWG specifications, later moved to Google.) However, in the view of the Web
held by the WHATWG, there is also a fourth mass-market browser: Microsoft’s In-
ternet Explorer – the leader in market share. Microsoft has not been participating in
the WHATWG despite having been invited. The publicly stated reason was that the
WHATWG lacked a patent policy [Wilson]. Dean Edwards, a Internet Explorer ex-
pert not affiliated with Microsoft, joined the WHATWG later [NewMember].

Even though the group of WHATWG members is invite-only, anyone is allowed
to join the WHATWG mailing list and contribute technically, which makes the pro-
cess open. The editor acts as a benevolent dictator who writes the specifications tak-
ing into account the contributions. The WHATWG members “provide overall guid-
ance” [WHAT-Charter], which means the power to impeach and replace the editor
of the specifications.

Microsoft is not expected to implement the WHATWG specifications in Internet
Explorer in the near term. Instead, the implementations of the WHATWG specifica-
tions for IE are expected to be built by teams not affiliated with Microsoft using the
extensibility mechanisms provided by Microsoft in IE. [IEcompat]

I share the view of the Web that holds WebKit, Presto, Gecko and Trident (the
engines of Safari, Opera, Mozilla/Firefox and IE, respectively) to be the most im-
portant browser engines.

2.3.3 The WHATWG Specifications
The WHATWG has two specifications in development and another two that are ex-
pected in the future. [WHAT-Charter]

14 AN HTML5 CONFORMANCE CHECKER

The two specifications being developed are Web Forms 2.0 [WebForms2] and
Web Applications 1.0 [WebApps]. Web Forms 2.0 is an update to HTML 4.01 forms.
Web Applications 1.0 is a re-specification of HTML that both constrains and ex-
tends HTML. The language specified by Web Forms 2.0 and Web Applications 1.0
taken together is referred to as (X)HTML5. It is expected that Web Forms 2.0 will be
eventually be folded into the Web Applications 1.0 specification.

The two expected future specifications are Web Controls 1.0 for creating new
widgets and CSS Rendering Object Model for defining programmatic access to the
CSS rendering tree. [WHAT-Charter]

Web Forms 2.0. Web Forms 2.0 extends HTML forms with new features. The
HTML forms as of HTML 4.01 are considered “Web Forms 1.0”. Web Forms 2.0 is
not a standalone specification. Instead, it specifies updates to HTML 4.01 and the
DOM. The choice of updates is based on what has been identified as common needs
and what can be implemented as a script-based library for Internet Explorer
[IEcompat].

The most obviously visible new features are new input field types. For example,
there are new inputs for dates that can be implemented in browsers by popping up
a platform specific calendar widget. The new input types are backwards compatible
in the sense that unknown input types degrade into text inputs in legacy browsers.
Simple constraints on the values of the input field can be declared and checked by
the browser without the form author having to resort to scripting. For complex re-
strictions, new integration points for scripts are provided.

In addition to the new input types, there is also a repetition model for adding
and removing repeating sets of fields from the form without scripting. A new XML
form submission format in introduced. The format can also be used for pre-loading
values into the form fields.

Web Forms 2.0 is the most mature part of the new features of HTML5. It has
already been implemented and shipped in the Opera 9 browser [Opera9].

Web Applications 1.0. Web Applications 1.0 is the main specification for HTML5.
The name of the specification highlights the Web application focus of the new fea-
tures. An XML-based parallel language called XHTML5 is specified alongside
HTML5.

The specification has two general areas that are intertwined. On the one hand,
new features are specified. On the other hand, existing features are specified in de-
tail that was absent from previous specifications. When existing features are respe-
cified, the behavior of the four notable mass-market browsers is reverse engineered
and the specification is made compatible with the existing practice. New features
are based on expected use cases.

As the name of the specification suggests, there are new features aimed for Web
applications. New application-oriented markup includes canvas for establishing a
canvas onto which scripts can draw, menu and command for building menus,
meter and progress for representing gauges and progress indicators, datagrid
for complex data display widgets, details for additional information that can be

CHAPTER 2. HISTORY OF HTML LEADING TO HTML5 15

hidden and event-source for indicating that the page listens to server-sent re-
mote events.

In addition to new elements, the specification includes a number of scripting
APIs for Web applications, but they are outside the scope of this thesis as docu-
ments are checked without executing scripts.

The addition of new elements for document structure is based on an analysis of
common class attribute values as used on the Web [Stats]. New elements for doc-
ument structure include section for document sections, nav for identifying page
navigation, article for marking up standalone parts of page content, aside for
tangential notes, header for complex headers and footer for page footers.

There are also new elements that do not quite fit to the groups given above:
figure for grouping figures with captions, time for associating a machine-
readable point in time with human-readable text designating a point in time (e.g.
for use in conjunction with microformats [Microformats]) and m for marking high-
lighted text. The embed element for (typically) plug-in-rendered content is
legitimized.

Finally, HTML5 specifies a text/html parsing algorithm in meticulous detail.
The algorithm is designed to work with existing erroneous Web content in a way
that is compatible with existing browser behavior. In general, the algorithm strives
to be compatible with the behavior of Microsoft Internet Explorer to the extent pos-
sible while still keeping the resulting data structure as a DOM [DOM2] tree that
does not have hidden annotations.

The requirement of a tree that does not have hidden annotations fits into the ar-
chitecture of all contemporary browsers and is the design already used in Gecko
and WebKit (the engines of Firefox and Safari). The way the HTML5 parsing al-
gorithm deals with misnested tags is based on the behavior of WebKit. Presto (the
engine of Opera) appears to have hidden annotations in the tree when the input
was malformed [SoupDOM]. Trident (the engine of Internet Explorer) does not
guarantee a tree model [SoupDOM]. Since Trident uses a non-tree data structure
but the other engines assume a tree, the behavior of the leader in market share can-
not be adopted exactly without requiring drastic architectural changes in the other
engines.

16 AN HTML5 CONFORMANCE CHECKER

Chapter 3

Schema Languages

In this chapter, XML schema languages are reviewed in order to put the choice of
RELAX NG and Schematron in context.

A schema is a formal definition that partitions the set of all possible XML docu-
ments into two disjoint sets so that each document is in either set: documents that
are valid according to the schema and documents that are not valid according to
the schema. A computer language for expressing a schema is called a schema lan-
guage. The process of checking whether a given XML document is valid according
to a schema is called validation.

The notion of a schema could be generalized to mean any abstract partitioning
of the set of all possible XML documents into two disjoint sets. However, in com-
mon usage “schema” means a formal definition expressed in a schema language.
This less abstract notion is used in this thesis.

There are two main classes of schema languages: grammar-based schema lan-
guages and schema languages that are not grammar-based. The properties of
grammar-based schema languages in terms of mathematics and formal language
theory as well as the related validation algorithms are discussed in [Taxonomy]. In
the article, three types of grammar-based languages are identified: local, single-type
and regular (from least expressive to more expressive). The article identifies three
classes of schema languages in addition to grammar-based languages: special-
purpose languages dedicated to a particular kind of information that may be rep-
resented as XML, languages for representing identity constraints and languages for
namespace-based validation dispatching.

3.1 DTDs
XML has a built-in schema language that consists of DTDs [XML]. DTD is short for
Document Type Definition. However, for reasons explained below, it does not actu-
ally define the type of the document in a useful way. Unlike many later schema lan-
guages for XML, DTDs are not expressed as XML elements and attributes. Rather,
the DTD syntax is separate from the syntax for elements and attributes. (It is

17

sometimes said that DTDs do not have XML syntax, but this is misguided in the
sense that the DTD syntax is part of XML.)

DTDs are grammar-based. The expressiveness of DTDs is relatively weak com-
pared to other schema languages. In [Taxonomy], DTDs are classified to be of the
type “local”, which is the weakest grammar type. A grammar-based schema lan-
guage is classified as “local” if there are no competing grammar productions. Two
non-terminal productions compete if they have the same terminal on the right-hand
side of the productions. The practical consequence is that the content model of an
element cannot depend on the context of the element in the document tree.

SGML DTDs were slightly more expressive than XML DTDs. XML removed
some of the more complex DTD features. In addition, XML made it possible to
parse documents without the parser knowing the DTD grammar for the document.
Unlike with XML, SGML parsers needed to know the DTD grammar in order to be
able to parse the document.

3.1.1 Infoset Augmentation
DTD-based validation is intertwined in the process of parsing XML. Instead of
merely checking that the structure of the document meets the constraints of the
grammar, DTDs have features that augment the infoset. Infoset means the informa-
tion structure embodied in an XML document [Infoset]. Infoset augmentation
means that the validation process adds some information that is reported to the ap-
plication compared to the situation where the document is parsed without any val-
idation formalism between the document and the application. Infoset augmentation
is problematic in three ways.

First, the DTD is usually included in the document by reference but the XML 1.0
specification makes processing such external references optional. As a result, the
application sees different data depending on whether the DTD is being processed
or not.

Second, being able to attach datatypes to attributes requires that there not be
two derivations for a given document that would assign conflicting datatypes to a
given attribute. To avoid this problem, the grammars expressed as DTDs are re-
quired to be unambiguous. This requirement is restrictive and would be unneces-
sary for pure non-infoset-augmenting validation.

Third, since one of the key features of XML is that a document can be parsed
even if it does not have a DTD and since the DTD is supplied by the document it-
self, an application cannot trust documents to supply DTDs with particular infoset
augmentation features. For example, a consuming application cannot trust incom-
ing documents to declare a particular attribute to have the type ID or to declare de-
fault values for particular attributes. Therefore, applications cannot rely on
DTD-based infoset augmentation taking place, which severely limits the usefulness
of such infoset augmentation.

18 AN HTML5 CONFORMANCE CHECKER

3.1.2 Datatyping
XML DTDs allow a primitive form of attribute datatyping. The possible datatypes
are CDATA, ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN and NMTOKENS.
(SGML DTDs have more datatypes.) Additionally, the value of an attribute can be
constrained to be one of several enumerated tokens. CDATA means an uncon-
strained string. Cross-references whose integrity is checked are represented using
the ID, IDREF and IDREFS types. (There is a single document-wide namespace for
IDs established by the ID type. A particular reference cannot be constrained to
point to elements of a certain type only.) The only datatypes that constrain the al-
lowed lexical space of the attribute value without involving any referential se-
mantics are NMTOKEN and NMTOKENS. NMTOKEN is merely a token that satisfies a
particular, relatively arbitrarily specified, grammar production. NMTOKENS is a
white space-separated list of these. These datatypes are rather useless unless the de-
sired datatype constraint happens to match the definition of NMTOKEN.

3.1.3 Other Problems with DTDs
It was noted above that the document supplies its own DTD. This is one of the key
problems. It means that DTD-based validation cannot be used for determining if a
document belongs to a class of documents (the “type” of the document) that the re-
cipient expects to receive. That is, if two parties have agreed to exchange docu-
ments in a particular format, the recipient cannot use normal DTD-based validation
to find out whether a given document is in the pre-agreed format, because the
sender can use another DTD in the document. DTD-based validation only shows
whether a document conforms to the grammar that the document declares for itself.
Moreover, since DTDs require that the schema is included in the document itself,
DTDs effectively require the document to be contaminated with schema-specific
syntax.

There are implementations that allow validation against an application-supplied
DTD, but this is not a standard part of XML 1.0 processing. Other schema formal-
isms (RELAX NG in particular) provide superior features in such a scenario.

Lastly, DTDs do not work properly with namespaces, because the Namespaces in
XML specification [XMLNS] layers the namespace processing on top of XML 1.0
processing and, therefore, DTD-based validation takes place underneath the
namespace layer – not on top of it.

DTDs were not used in this project, because DTDs are not expressive enough,
are not namespace-aware and would allow smuggling of grammar productions by
the document that is being checked.

3.2 W3C XML Schema
The W3C XML Schema [XSD] (sometimes abbreviated WXS but more often XSD for
XML Schema Definition) is a schema language defined by the W3C in response to

CHAPTER 3. SCHEMA LANGUAGES 19

shortcomings of DTDs. XSD is a grammar-based schema language. In [Taxonomy],
XSD is classified as “single-type”. In a single-type language, competing productions
within a content model and competing start symbols are prohibited. The practical
consequence is that the grammar is required to be unambiguous. (A grammar is
ambiguous if there is more than one derivation for a given document tree.)

XSD provides a richer repertoire of datatypes than DTDs. In fact, data typing is
seen as one of the major improvements over DTDs. XSD validation very much in-
volves infoset augmentation: instead of merely checking whether a document satis-
fies the schema, the XSD validation process yields a Post-Schema Validation Infoset
(PSVI) which is the infoset of the validated document augmented with datatype
information.

The concept of PSVI stems from the data-orientedness – as opposed to
document-orientedness – of XSD. XSD is biased towards use cases that involve seri-
alizing objects or database items as XML on one hand and, on the other hand, data-
binding which involves doing the reverse. Despite the datatype focus of XSD, the
datatype system is not extensible. The schema author has to get by with the data-
types that the specification provides. For this reason it is not uncommon to see
schemata that do not constrain the data type of a given attribute even when the at-
tribute has a very specific format.

XSD is rather verbose and, therefore, inconvenient to write. After a compact
syntax for RELAX NG (page 22) was developed and found useful, a compact syntax
for XSD was developed by Kilian Stillhard [CompactXSD]. However, this format is
not standardized and appears not to have gained wide acceptance.

The W3C held a workshop on XML Schema 1.0 User Experiences and Interoper-
ability [SchemaUE] where XSD users and vendors of implementations reported on
their experiences. There had been problems with the complexity of the specification
and the resulting implementation inconsistencies. The reports about the problems
faced with XSD were summarized by Rick Jelliffe on the xml-dev mailing list in
[Freddy].

The problems with XSD are discussed in more detail in [IntroXML].
XSD was not used in this project due to its reputation of implementation prob-

lems, its verbosity, its data-orientedness and relative lack of acceptance in
document-oriented tasks.

3.3 Document Structure Description
Document Structure Description (DSD) [DSD] is a schema language developed at
the University of Aarhus and AT&T Labs Research. In [Taxonomy], DSD 1.0
[DSD1] is classified as “single-type” and DSD 2.0 [DSD2] is classified to be able to
represent any regular tree grammar.

DSD was not used in this project due to the wider acceptance of RELAX NG and
Schematron and the better availability of tools for RELAX NG and Schematron.
DSD has largely been sidelined in the marketplace by XSD, RELAX NG (discussed
below) and Schematron (page 23).

20 AN HTML5 CONFORMANCE CHECKER

3.4 TREX, RELAX, XDuce and DDML
There have been various also-ran schema languages in the quest for a replacement
for DTDs. Perhaps the most famous ones are TREX by James Clark [TREX] and
RELAX by Makoto Murata [RELAX]. These languages were the basis of RELAX NG
(discussed below), which has superseded them. Document Definition Markup Lan-
guage (DDML) was published as a W3C Note [DDML] but was abandoned in favor
of XSD. XDuce [XDuce] has not gained wide acceptance.

3.5 RELAX NG
RELAX NG [RNG] is a grammar-based schema language for XML. In [Taxonomy],
it is classified to be of the most powerful kind of tree grammars: “regular”. It was
developed from the basis of TREX and RELAX in OASIS (Organization for the Ad-
vancement of Structured Information Standards) with James Clark and Makoto
Murata (the developers or TREX and RELAX respectively) as the editors of the spe-
cification. RELAX NG has also been subsequently standardized as Part 2 of the
Document Schema Definition Language (DSDL) family [ISO19757-2].

James Clark describes RELAX NG as an evolution and generalization of XML
DTDs based on experience from both SGML and XML. Design patterns used for
writing DTDs can be applied to RELAX NG. Moreover, DTDs can be programmat-
ically converted into RELAX NG. [RNGdesign]

RELAX NG treats elements and attributes in a uniform way to the maximum ex-
tent possible. This means that co-occurrence constraints between attributes and the
content model of an element are possible.

RELAX NG is strictly for validation. No infoset augmentation is performed.
Since there is no need to ambiguously assign datatypes to information items based
on the derivation in the grammar, ambiguous grammars are allowed. A document
is valid according to a RELAX NG schema if there is at least one derivation for the
document in the grammar expressed by the schema. It does not matter if there are
multiple derivations. Allowing ambiguous grammars makes RELAX NG schemata
easier to write than DTDs or XSD.

3.5.1 Datatyping
RELAX NG has only two built-in datatypes: string and token. A schema may
enumerate permissible datatypes and typed literals. The string type uses strict
code point for code point comparison when comparing the literal and a value from
the document being validated. The token datatype normalizes white space before
the comparison. When a literal is not given, both types allow all strings that are leg-
al in XML. Additionally, there is a list pattern that allows datatypes and literals
to be used in white space-separated lists.

In addition to the built-in datatypes, RELAX NG has a framework for pluggable
datatype libraries. A datatype library makes it possible to use a Turing-complete

CHAPTER 3. SCHEMA LANGUAGES 21

programming language for checking whether a string conforms to a particular data-
type. In formal terms, a datatype (with given parameters) is a formal language and
an equivalence relation for strings of the language. Each possible string of XML
characters either belongs in the language of the datatype or does not belong in the
language. For example, a datatype for dates could accept strings that represent val-
id Gregorian dates in the W3C-DTF notation [W3C-DTF] and reject all other strings.

A datatype also defines an equivalence relation for valid values. At minimum,
each string needs to be equivalent with an identical string (reflexivity). However,
the equivalence relation may be more lax as long as it is transitive and symmetric.
For example, a datatype might accept all possible strings and define the equival-
ence relation as case-insensitive comparison.

It is important to note that the RELAX NG notion of datatypes only concerns
classifying strings. Unlike the non-extensible XSD type system and the PSVI
concept, RELAX NG datatyping is not about converting the strings to datatypes of
a programming language (integers, floats, date objects, etc.). Special-purpose tools
built on top of RELAX NG could use datatyping for databinding (if they restrict
grammar ambiguity), but such usage is not sanctioned by the RELAX NG
specification.

The RELAX NG defines syntax for using datatype libraries within a schema.
However, the RELAX NG specification does not specify an API for interfacing a
datatype library implementation with a RELAX NG validator, because such an API
needs to be specific to the programming language used for implementation and
RELAX NG does not require any particular programming language. However, for
Java there is a de facto standard datatype library API developed by James Clark
and Kohsuke Kawaguchi [DatatypeAPI]. The Java API has also been adapted to
other languages – C# in particular.

There are two well-known datatype libraries: the XSD datatype library [RNG-
XSD] and the DTD compatibility datatype library [DTDCompat]. The former brings
the datatypes from [XSDDatatypes] to RELAX NG. The latter brings the datatyping
features of DTDs to RELAX NG. RELAX NG validators often have built-in support
for these two datatype libraries.

3.5.2 Compact Syntax
RELAX NG is defined as an XML vocabulary. However, since the XML syntax is
designed for marking up text, it is not particularly convenient to write or even read
in cases where there’s almost no text and a lot of markup.

To address this problem, RELAX NG has an alternative Compact Syntax [Com-
pact]. The compact syntax is vastly more human-friendly than the XML syntax and
is intuitive to anyone familiar with the customary notation for regular expressions
and the Backus–Naur Form. A tutorial of the Compact Syntax is given in [RNC-
tutorial]. As with RELAX NG proper, the Compact Syntax was specified by OASIS
and has subsequently been adopted as an amendment to the ISO standard
[ISO19757-2Amd1].

22 AN HTML5 CONFORMANCE CHECKER

3.5.3 Use in This Project
I chose RELAX NG as the main schema language for this project because of its
status as the schema language of choice for document-oriented tasks and because a
schema project [HTML5RNG] and a validator project [ValidatorAbout] were
already in place. Elika Etemad had already chosen the Compact Syntax for the
schema project. This was a good choice because of the human-friendliness of the
Compact Syntax.

3.6 Schematron
Schematron [Schematron15] is an assertion-based schema language. In [Taxonomy],
it is classified as a language for expressing identity constraints. Schematron was de-
veloped by Rick Jelliffe at the Academia Sinica Computing Centre (ASCC). A newer
version of Schematron has been standardized as Part 3 of the Document Schema
Definition Language (DSDL) family [ISO19757-3]. The ISO version of Schematron is
incompatible with processors for the ASCC versions of Schematron.

A Schematron schema consists of assertions. In practice, an assertion is an XPath
[XPath] expression and its context expression. The XPath expression is tested for
evaluation to either true or a non-empty node set. This condition can either be con-
sidered required (false or an empty node set constitute an error) or an error (true or
a non-empty node set constitute an error) depending on what the assertion is de-
signed to test.

This is significantly different from grammar-based schema languages. In order
for a document to conform to grammar-based schema, there has to be a derivation
for the document in the grammar. Therefore, in a grammar-based schema, by de-
fault, everything is forbidden and only the constructs that can be derived from the
grammar are allowed. In Schematron, however, everything is allowed by default
and each assertion makes a specific restriction.

3.6.1 Using RELAX NG and Schematron Together
Adding specific restrictions without having to take a stance on the document as a
whole makes Schematron ideal for refining a cruder schema written in another lan-
guage. Rick Jelliffe, the creator of Schematron, has characterized Schematron as “a
feather duster for the furthest corners of a room where the vacuum cleaner cannot
reach” [SchematronOld]. Indeed, in the last three years, a pattern of using RELAX
NG and Schematron together has emerged: a slightly over-permissive RELAX NG
grammar is used for the bulk of the schema and Schematron assertions are used to
tighten corner cases. For example, the schemata for the Atom syndication format
[RFC4287] and DocBook 5.0 [DocBook] are RELAX NG schemata that are refined
with Schematron assertions.

The RELAX NG schema and the Schematron schema can be separate or com-
bined. If they are separate, the document is simply validated against both the

CHAPTER 3. SCHEMA LANGUAGES 23

RELAX NG schema and the Schematron schema separately and considered valid if
it passes both validations.

In the combined case, the Schematron assertions are written inside the RELAX
NG schema. The validation phases are still separate, but the Schematron assertions
can be organized so that they appear in the relevant element context in the RELAX
NG schema for a human reader. An implementation may use the RELAX NG
schema context of an assertion to establish the XPath context in Schematron.
[Relaxtron]

3.6.2 Use in This Project
Following the example of Atom and DocBook, I chose Schematron as the secondary
schema language in this project for expressing details that are inconvenient or im-
possible to express in RELAX NG.

I chose Schematron 1.5 [Schematron15] instead of ISO Schematron [ISO19757-3]
due to lack of tool support for the ISO version – in particular lack of support in the
Jing engine (page 37) [Jing].

24 AN HTML5 CONFORMANCE CHECKER

Chapter 4

Prior Work on Markup Checking

The service presented in this thesis is not by any means the first markup checking
service on the Web. In this chapter, notable other markup checking services are
reviewed.

4.1 The W3C Markup Validation Service
The W3C Markup Validation Service [W3Cvalidator] (better known as the W3C
Validator), originally written by Gerald Oskoboiny, is probably the best known of
the markup checking services reviewed here. For many users, it is the validator. It
has been in use since the late 1990s.

The W3C Validator is a Perl CGI front end for OpenSP. OpenSP [OpenSP] is an
SGML parser based on James Clark’s SP [SP]. OpenSP performs DTD-based valida-
tion according to SGML. That is, the input document is validated against the DTD
that the document declares for itself. The front end allows the user to override the
DTD declared by the document, in which case the front end modifies the document
accordingly before passing it to OpenSP. The HTML 4.01 and XHTML 1.0 specifica-
tions come with normative DTDs. Typically documents include one of the normat-
ive DTDs by reference, but a document can include any DTD.

The W3C Validator sticks strictly to the SGML validity formalism. It is often ar-
gued that it would be inappropriate for a program to be called a “validator” unless
it checks exactly for validity in the SGML sense of the word – nothing more, noth-
ing less. Markup language specifications virtually always contain conformance re-
quirements that cannot be expressed in an SGML DTD. Those requirements are
simply not checked for at all. For example, in HTML 4.01 Strict, the value of the
datetime attribute is required to be a date in the W3C datetime format [W3C-
DTF], but since SGML DTDs cannot express this constraint, any string passes as a
valid value for datetime.

Another problem is related to XML support. XML 1.0 was designed to be com-
patible with SGML in the sense that an XML document that is valid according to its
DTD when treated as XML is also a valid SGML document when the Annex K of
the SGML standard [ISO8879TC2] is in effect. The opposite is not always true,

25

however: A document can be valid for the purposes of SGML without even being
well-formed from the XML point of view. As a trivial example, SGML does not re-
quire white space between attributes but XML does. As a result, tools designed for
SGML are not suitable for checking XML correctness. When giving results for XML
documents, the W3C Validator states briefly “Note: The Validator XML support has
some limitations.” [W3Cvalidator]

The SGML validation process requires a different SGML declaration for XML
than for HTML 4.01. The choice of SGML declaration is external to the document.
However, to avoid asking the user the rather esoteric question of which SGML de-
claration to use, the W3C Validator uses heuristics to decide which SGML declara-
tion to use.

I did not choose the code of the W3C Validator as a starting point for the soft-
ware discussed is this thesis, because the W3C Validator is a DTD-based validator
for SGML documents written in Perl and C while the software discussed in this
thesis started out as a RELAX NG-based validator for XML documents with key lib-
raries written in Java.

4.2 WDG HTML Validator
The Web Design Group HTML Validator [WDG], developed by Liam Quinn, is
very similar to the W3C Validator. It too has been in use since the late 1990s, has
James Clark’s SP [SP] inside and has a Perl front end.

Originally, the WDG HTML Validator was differentiated from the W3C Validat-
or by better error messages, by support for hexadecimal character references and by
support for more character encodings than just ISO-8859-1 [WDG1998]. The W3C
Validator has later added all these features as well. Currently, the WDG Validator
is differentiated from the W3C Validator by warning about certain SGML markup
minimization features that do not work in real-world browsers, by warning about
character references to C1 control characters (characters U+0080…U+009F) and by
using a different SGML declaration with custom DTDs [WDG2007]. In addition, the
WDG HTML Validator can spider a site and validate multiple pages on one
invocation.

Like the W3C Validator, the WDG HTML Validator is restricted to the SGML
validity formalism.

I did not choose the code of the WDG Validator as a starting point for the soft-
ware discussed in this thesis due to the same technical reasons that apply to the
code of the W3C Validator.

4.3 Page Valet
Page Valet is a DTD-based validator developed by Nick Kew. Page Valet uses
OpenSP for validating HTML as SGML. However, unlike the W3C and WDG

26 AN HTML5 CONFORMANCE CHECKER

validators, Page Valet uses a real XML parser – Xerces-C – by default for validating
XML. (The option to use OpenSP for XML is offered.) [Valet]

Page Valet has an experimental option for turning on XSD-based validation in
Xerces-C [XercesC]. However, there is no user interface for providing a schema sep-
arately from the document. That is, it is up to the document to specify its own
schema.

For SGML-based validation, Page Valet provides three parse modes: Strict, Web
and Fussy. The Strict Mode does what the W3C Validator does. It adheres strictly to
the de jure formalism even when the results are impractical considering browsers.
The Web Mode is described to be similar to what the WDG HTML Validator does.
That is, SGML markup minimization features that do not work in real browsers are
flagged. The Fussy Mode is described to “add further checks over and above Web
Mode”. [ValetMode]

Unlike the W3C and WDG validators, Page Valet is not a Perl CGI program. It is
implemented as a C-language Apache module called mod_validator [mod_validat-
or]. I did not use mod_validator as a starting point for the software discussed in
this thesis, because I considered a managed runtime to be a safer choice than C for
Web-facing services and I had more experience with Java. Moreover, using RELAX
NG within a C program would have required using libxml2 [libxml2] instead of
Xerces-C in practice.

4.4 The Schneegans XML Schema Validator
The XML Schema Validator (formerly XHTML Schema Validator) by Christoph
Schneegans validates XML documents against XSD schemata. It does not validate
HTML documents. [Schneegans]

While the three DTD-based validators discussed above use any DTD that the
document declares for itself, the XML Schema Validator has a closed list of built-in
XSD schemata. The user can choose a schema from a list manually or request the
validator to choose a built-in schema based on the xsi:schemaLocation or the
doctype. The schemata offered include the three variants of XHTML 1.0, XHTML
1.1, XHTML 1.0 Basic, MathML 2.0, XSD itself and Google Sitemaps.

The schemata for the variants of XHTML as well as XSD itself come from the
W3C. The schemata for XHTML 1.0 were published as a W3C Note
[XHTML10XSD]. The schemata for modularized XHTML were published as a Pro-
posed Recommendation [M12N11] (later changed back to Working Draft
[M12N11WD]).

The XML Schema Validator is written in Visual Basic .NET and is based on the
XML tool chain provided as part of the Microsoft .NET Framework 2.0. The source
code is not available.

CHAPTER 4. PRIOR WORK ON MARKUP CHECKING 27

4.5 Relaxed
Relaxed [RelaxedValidator] by Petr Nálevka validates documents against RELAX
NG and Schematron schemata. The main advantage of Relax compared to the W3C
Validator is the ability to check for requirements that cannot be expressed in DTDs.
Relaxed was originally presented in Czech in Nálevka’s bachelor’s thesis [Val-
idace], which I have been unable to read beyond the English abstract. Relaxed has
subsequently been described in English in a paper co-written by Nálevka and his
thesis instructor Jirka Kosek [Relaxed].

Relaxed builds upon James Clark’s Modularization of XHTML in RELAX NG
[M12N-RNG]. The schemata developed by Clark have been further refined and
augmented with Schematron assertions. In addition to Schematron assertions based
on the conformance requirements of XHTML 1.0, Relaxed offers optional
Schematron-based checks for some of the Web Content Accessibility Guidelines 1.0
[WCAG] requirements. In later updates after the initial release, schemata for com-
pound documents that embed SVG [SVG] and MathML [MathML] in XHTML have
been added.

Relaxed is written in Java and JSP. It uses the Sun Multi-Schema Validator
(MSV) by Kohsuke Kawaguchi [MSV] as its validation engine. Even though there is
a plug-in for MSV that enables support for Schematron assertions that are embed-
ded in RELAX NG, Relaxed uses a separate XSLT-based [XSLT] solution. The
Schematron part is first extracted from RELAX NG using XSLT. Then the resulting
Schematron schema is compiled into an XSLT script using another XSLT transform-
ation. Finally, the resulting XSLT script is run against the input document.

Relaxed offers a list of preset schemata. Custom schemata are not allowed. Pre-
set schemata are provided for XHTML 1.0, optionally with SVG and MathML. The
schemata for XHTML 1.0 can also be used for HTML 4.01. For XHTML 1.0 and
HTML 4.01 without SVG or MathML, partial WCAG checks are available. A separ-
ate user interface is provided for a prerelease version of DocBook 5.0
[RelaxedDocBook].

The HTML support in Relaxed is based on the idea that HTML 4.01 can be
mapped to XHTML 1.0 before applying XML validation technologies. Relaxed uses
a patched version of John Cowan’s TagSoup [TagSoup] for the conversion.

Of the validation services reviewed in this chapter, Relaxed is the closest to the
system described in this thesis. The reason why I did not use the Relaxed code base
as the starting point for this project is that I had already developed a comparable
online validation service user interface around the Jing RELAX NG engine [Jing],
which I found preferable over MSV (page 37), by the time Relaxed was announced
in July 2005 [RelaxedAnn]. (I had already deployed mine in the spring of 2005.)
Moreover, I prefer using a SAX pipeline as the output generation method (page 35)
instead of JSP, because it is easier to guarantee the correctness of the output when a
SAX pipeline is used.

28 AN HTML5 CONFORMANCE CHECKER

Even though Relaxed and the service described in this thesis do not share Java
code, I have used the schemata from the Relaxed project for the pre-HTML5 func-
tionality of my validation service.

4.6 The Feed Validator
The Feed Validator [FeedValidator] by Sam Ruby, Mark Pilgrim, Joseph Walton,
and Phil Ringnalda is notably different from the services reviewed above. Whereas
the other services focus on HTML and/or XHTML, the Feed Validator focuses on
Atom and RSS feeds, which are rather different from HTML and XHTML as
markup languages. Also, the methodology used in the Feed Validator is signific-
antly different.

The Feed Validator does not use any schema formalism. Instead, it uses hand-
crafted SAX handlers written in Python [Dive]. The main SAX ContentHandler
(page 31) maintains a stack of element-specific delegates. Each element-specific del-
egate (inheriting from a common base) can check the conformance requirements
pertaining to its element.

The approach taken in the Feed Validator has two benefits over schema-based
validation. First, the Feed Validator is not limited by the capabilities of any schema
formalism. Since Python is a full programming language, any requirement that is
machine checkable in principle is checkable by a Python program. Second, since the
emission of error messages is programmed by humans on a case-by-case basis, the
messages can be as good and informative as the human developers care to make
them. In the case of grammar-based schema languages in particular, error messages
are generated by the validation engine in which case context-sensitive advice is
generally not provided except by perhaps applying guesswork outside the valida-
tion engine.

It should be noted that feeds are different from (X)HTML in the sense that there
is a greater focus on string values adhering to certain formats and the nesting struc-
tures of elements are less complex than in (X)HTML. The Feed Validator does not
validate (X)HTML content embedded in feeds.

I did not choose the Feed Validator methodology for this project, because it was
assumed that using a domain-specific non-programming language – RELAX NG –
would be more manageable in terms of effort and malleability during the develop-
ment process of HTML5. However, in the hybrid approach that I did choose, the
non-schema-based checkers (page 49) are similar to the ContentHandler deleg-
ates used by the Feed Validator.

4.7 Validome
Validome by Thomas Mell, Vadim Konovalov, Alex Leporda, Olivier Duffez,
Eduard Schlein and Dirk Klar checks both (X)HTML and feeds. Additionally, Val-
idome offers generic XML validation against a DTD or an XSD schema declared by

CHAPTER 4. PRIOR WORK ON MARKUP CHECKING 29

the document itself. Validome also offers to check DTDs and XSD schemata for syn-
tax errors. [Validome]

In contrast to the other services that are English-only or also provide messages
in French, Validome supports German and English as the user interface languages.
The (X)HTML facet of Validome also offers French and Russian as user interface
languages.

Validome uses SGML DTDs for HTML and XSD for XHTML. Additionally, Val-
idome performs non-schema checks, which makes it (in at least some areas) more
comprehensive than the other (X)HTML validators discussed above.
[ValidomeStaff]

It is difficult to review what exactly Validome does, because its inner workings
are not publicly documented and the source code is not available. Still, it is worth
emphasizing that Validome goes beyond schema formalisms when specifications
have conformance requirements that cannot be expressed as schemata.

30 AN HTML5 CONFORMANCE CHECKER

Chapter 5

Implementation

This chapter starts the second part of this thesis which focuses on the software im-
plemented as the experimental part of the thesis project.

5.1 The SAX API
The implementation uses extensively the Simple API for XML (SAX) version 2
[SAX]. Therefore, a brief introduction to the API is in order. SAX is discussed at
length in [SAX2].

SAX is a community-created parser API for XML parsers written in Java. It has
later been adopted as an official part of the standard Java class library. The API has
also been adapted to other programming languages.

SAX is a streaming API. That is, data is reported to the application as the parse
progresses as opposed to the parser handing a full document tree to the application
after the parse. SAX is a push API. This means that the parser owns the main pro-
cessing loop and reports data to the application through callbacks instead of the ap-
plication requesting data from the parser.

The callbacks are organized in various handler interfaces that application classes
implement in order to receive parse events (i.e. callback calls). It is necessary to dis-
cuss only the main interface, ContentHandler, here. ContentHandler has the
following methods that the parser calls:
startDocument()

Reports the start of the document.
endDocument()

Reports the end of the document.
startPrefixMapping(String prefix, String uri)

Reports the start of a namespace prefix mapping as per [XMLNS]. When
namespace processing is enabled, xmlns attributes show up in SAX as prefix
mapping and do not show up as attributes.

endPrefixMapping(String prefix)
Reports the end of a namespace prefix mapping.

31

startElement(String uri, String localName, String qName,
Attributes atts)

Reports an element start. In XML, an element start always corresponds to a start
tag or an empty-element tag. In HTML, element starts may be implied by other
markup.

endElement(String uri, String localName, String qName)
Reports an element end. In XML, an element end always corresponds to an end
tag or an empty-element tag. In HTML, element ends may be implied.

characters(char[] ch, int start, int length)
Reports text in element content. A single run of text may be split across multiple
method calls. An efficient implementation allows the application to read data
straight from the buffer the parser itself is reading.

ignorableWhitespace(char[] ch, int start, int length)
Reports white space that is ignorable according to the DTD of the document (if a
DTD is processed). For the purpose of this thesis, this method can be considered
a special-case alias for characters().

skippedEntity(String name)
Reports that the parser skipped an entity reference, because the parser had not
processed the external DTD and had not seen the possible definition of the
entity.

processingInstruction(String target, String data)
Reports a processing instruction. Processing instructions are of the form
<?target data?>.

setDocumentLocator(Locator locator)
Sets up source line and column reporting.

The ContentHandler interface does not expose comments, which an XML pro-
cessor is not required to report to the application, nor syntactic sugar like CDATA
section boundaries.

I chose GNU Ælfred2 [GNUJAXP] as the XML SAX parser for this project. Modi-
fications to the parser were necessary for normalization checking (page 53) and for
other character encoding-related checking (page 55). I also considered Xerces-J 2
but I deemed it more difficult to modify. For HTML, I developed a special-purpose
SAX parser.

5.2 The HTML Parser
I implemented an experimental HTML parser to enable checking of text/html
with XML tools. I developed the parser speculatively before the HTML5 parsing al-
gorithm was published. The implementation sufficiently demonstrates the feasibil-
ity of the chosen approach for the purpose of this thesis project. Modifying the
parser to implement the HTML5 parsing algorithm was deemed to be out of the
scope of the thesis project and is discussed as possible future work.

32 AN HTML5 CONFORMANCE CHECKER

update-parser

5.2.1 HTML5 as an Alternative Infoset Serialization
The fundamental idea underlying the text/html support of the conformance
checker is that HTML5 can be treated as an alternative infoset serialization for a
subset of possible XML infosets [Infoset]. An HTML parser can appear to the XML
tooling as an XML parser parsing XHTML.

HTML5 and XHTML5 are not defined in terms of the XML Information Set spe-
cification [Infoset] but in terms of the DOM [DOM2], which is a tree API for both
HTML and XML. Regardless of definitional details, HTML5 and XHTML5 are con-
sidered alternative serializations that parse into a single kind of document tree.
Consider the following two documents:
<!DOCTYPE html>
<html>

<head>
<title>Hello World!</title>

</head>
<body>

<h1>Hello World!</h1>
<p>Foo</p>

</body>
</html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Hello World!</title>
</head>
<body>

<h1>Hello World!</h1>
<p>Foo</p>

</body>
</html>

The first one is an HTML5 document. The second one is an equivalent XHTML5
document. In order to make XML tools applicable to HTML5, the HTML5 parser
needs to emit SAX parse events as if it were an XML parser parsing an equivalent
XHTML5 document. When the HTML parser developed in this project parses the
first document, it reports the parse events that an XML parser would report when
parsing the second document.

5.2.2 TagSoup
The approach of making the HTML parser appear to be an XML parser was in-
spired by John Cowan’s TagSoup [TagSoup]. I deemed TagSoup itself unsuitable
for this project, however. TagSoup is designed to perform fix-ups on horribly mal-
formed markup and to never report a parse error of any kind. A parser must report

html

head

title

body

h1

p

“Hello World!”

“Hello World!”

“Foo”

Figure 1: Document tree

CHAPTER 5. IMPLEMENTATION 33

low-level errors and preserve high-level errors to be suitable for conformance
checking. Preserving high-level errors means that the kind of errors that the RELAX
NG layer, the Schematron layer and the non-schema checkers are designed to find
are not hidden. Tokenization errors are low-level errors that need to be reported on
the parser level.

After inspecting the TagSoup code base, I deemed it easier and less conflicting
with the goal of the TagSoup project to develop a parser specifically for HTML con-
formance checking than to modify TagSoup. (However, Petr Nálevka later chose
the route of modifying TagSoup for Relaxed.) I assessed the applicability of parser
generators briefly, but it was apparent that both the nature of HTML and the re-
quirements of the SAX API favored a hand-crafted parser.

5.2.3 Parser Design
The parser consists of a tokenizer that emits SAX events and SAX filters that add
endElement events for empty elements and perform tag inference for optional
tags. The tokenizer only emits startElement and endElement events for start
tags and end tags, respectively. As a result, the SAX events emitted by the tokenizer
may violate the SAX API contract. An empty element filter adds an endElement
event for every startElement event belonging to an element that does not have
an end tag in HTML. A tag inference filter adds startElement and endElement
events where HTML 4.01 Strict would allow tags to be omitted. In most cases, the
optional tags are end tags. Start tags that imply the end tag can be enumerated in a
simple lookup table. For implicit start tags, case-by-case checks are used.

Since I developed the parser before the HTML5 parsing algorithm was specified,
it did not make sense to implement error recovery. Instead, the parser treats most
tokenization errors as fatal. Also, by design, the parser is not concerned with nest-
ing errors that are known to be caught on the RELAX NG level even though con-
ventional HTML parsers have to deal with fixing certain nesting errors.

5.2.4 Minor Problems
There are some minor problems related to mapping HTML5 to XHTML5.
• XHTML5 does not allow the character encoding to be declared using the meta

element. Therefore, reporting an HTML5 document faithfully to XML tools as
XHTML5 and converting an HTML5 document into XHTML5 are subtly differ-
ent cases. In the former case one would want the meta element that declares the
character encoding to be reported, but in the latter case the element would be
omitted and the character encoding would be declared in the XML declaration
instead. Likewise, in the latter case the href attribute on the base element
would need to be converted to an xml:base attribute on the root element.

• XML places rather arbitrary restrictions on the characters that are permitted in
element and attribute names. Fortunately, these restrictions are not a problem
for conforming HTML5 documents. Unfortunately, XML also restricts the

34 AN HTML5 CONFORMANCE CHECKER

Browser

HTTP Response

GET ?doc=url
Result
Report

HTTP Server

HTML5
Serializer

C
on

tr
ol

le
r

Byte StreamServlet API

SAX Events

SAX Events

XHTML-Emitting
ErrorHandler

SAX Errors

SAX Errors

Checker
Back End

SAX Errors

Byte StreamEntityResolver API

HTTP Response

GET url

HTTP Client

Origin
Server

Document
to Check

Figure 2: Overall data flow

characters permitted in content more strictly than HTML5 does. For example,
HTML5 allows the form feed character. In the current implementation, the XML
restrictions apply. This issue needs to be addressed if HTML5 continues to allow
control characters that XML does not. The solution would be replacing the for-
bidden characters with permitted characters that have a similar syntactic role
(e.g. replacing the form feed with a space).

• Finally, the permitted contents of comments differ in a subtle way between XML
and HTML5. This is not a problem because the parser does not report comments
to the validation layer.

5.3 Front End
I reused the front end that I had developed be-
fore the start of this thesis project as the front
end for a service that allowed XML document
to be validated against RELAX NG schemata.

The front end is a rather straight-forward
Java servlet that handles form input, runs the
back end code and produces output using a
SAX pipeline. The front end code emits SAX
events as if an XML parser were parsing an
XHTML5 document corresponding to the out-
put. The output markup is produced by a an
HTML5 serializer. The serializer is an unpars-
er that takes SAX events corresponding to an
XHTML5 document and that writes HTML5
markup based on the events. For example, the
call endElement("http://www.w3.org/
1999/xhtml", "a", "a"); causes the
serializer to print . Hence, the approach
taken with output is the reverse of the ap-
proach taken with HTML5 input. Messages
from the back end are written straight away to
the output SAX pipeline, so the view and the
controller are effectively conflated. There is no
need for a separate data model, as the front
end is only a thin wrapper for the back end
code.

I chose this method of producing markup
because isolating the markup text generation
in a single serializer class makes it easier to get
markup generation right, compared to more
traditional methods where snippets of markup
text are generated ad hoc in multiple places in

CHAPTER 5. IMPLEMENTATION 35

the program. In particular, using an isolated serializer eliminates a whole class of
markup generation problems: forgetting to escape markup-significant characters or
accidentally escaping them twice. [ProducingXML]

All parts of the conformance checker report to a SAX ErrorHandler. The
ErrorHandler implementation emits SAX events for the error messages format-
ted as XHTML list items. There is no intermediate data model. The XHTML list
items are streamed out as the back end progresses on processing the input
document.

Expressing an XML document by writing Java method calls is not as convenient
as writing tags. To avoid hand-coding large unchanging parts of the user interface
markup as Java method calls, had I developed a code generator called SaxCompiler
[SaxCompiler] when I developed the front end for the RELAX NG validation ser-
vice. SaxCompiler is a SAX ContentHandler that produces Java source for a class
that will call the ContentHandler methods in the same sequence as the methods
of SaxCompiler itself were called. The resulting class plays back SAX method calls
recorded from a real XML parse. SaxCompiler supports the insertion of method
calls back to the application that uses the generated classes and supports recoding
XML fragments.

5.4 Back End Design
The basic architecture of the back end of the conformance checker is very simple: A
parser consumes the document byte stream and emits SAX parse events. An arbit-
rary number of SAX handlers can listen to the events. The SAX handlers do not
form a pipeline with one consumer emitting events to the next. Instead, the hand-
lers are placed side-by-side and each SAX event is repeated to every handler by a
chain of splitters.

HTML
Parser

XML
Parser

HTML5
Document

XHTML5
Document

ID
Assignment

RELAX NG
Validator

Schematron
Validator

Table
Checker

Splitter Splitter Splitter Etc.

ErrorHandler

Figure 3: Data flow inside the back end

The handlers can be schema-based validators or custom code. The consumers re-
ceive SAX parse events that affect the meaning of the document. The choices of syn-
tactic sugar are not exposed. For example, comments are not reported and it is not
exposed if and how characters were escaped in the source.

36 AN HTML5 CONFORMANCE CHECKER

The meaningful SAX events are the ones reported to the SAX ContentHandler
and DTDHandler interfaces. However, in the events reported to DTDHandler (no-
tifications of notations and unparsed entity declarations) are of no interest for an
(X)HTML5 conformance checker, so in practice the SAX handlers only listen to the
ContentHandler events. Moreover, the processing is genuinely namespace-aware
and, hence, qualified names are not used by event consumers. Instead, the con-
sumers observe namespace URIs and local names.

LexicalHandler is not listened to, because it exposes syntactic details that do
not affect the meaning of the document and it would be inappropriate to tie con-
formance on the higher layer to the choice of syntactic sugar on the lower layer.
DeclHandler is not listened to, because it exposes declarations that are intended
to be expanded by the XML processor and, thus, should not be managed by the
application.

The main SAX event handler is an instance of the Jing validation engine that has
been instantiated with a RELAX NG schema for HTML5 or XHTML5.

5.5 The Jing Validation Engine
There are two well-known Open Source RELAX NG validation engines for Java:
Jing by James Clark [Jing] and the Sun Multi-Schema XML Validator (MSV) by
Kohsuke Kawaguchi.

I chose Jing as the RELAX NG and Schematron validation engine. Before start-
ing this thesis project, I tried using MSV [MSV] in place of Jing [Jing] as the engine
of my generic validation service that allows user-supplied schemata. However, I
found that MSV was easier to crash with stack overflow with user-supplied
schemata. Also, Jing supports the RELAX NG Compact Syntax but MSV does not.

The rationale behind my choice was based on the requirements of the generic
validation service. In retrospect, the rationale is not strictly valid for the HTML5
conformance checker that has a particular fixed schema. With MSV, the stack size of
the Java runtime could be configured to be sufficient for the HTML5 schema. Also,
the schema could be converted from the Compact Syntax (page 22) to the XML syn-
tax of RELAX NG as part of the build process of the software. Therefore, consider-
ing HTML5 conformance checking only, it would have made more sense to com-
pare validation engines on their other merits, such as the quality of diagnostic mes-
sages. MSV was chosen for the Relaxed project due to quality of its error messages
[Kosek].

Jing implements Clark’s derivative algorithm [Derivative] for RELAX NG valid-
ation. For Schematron, Jing provides a wrapper for an XSLT engine. Jing supports
SAXON and Xalan. I used the SAXON XSLT engine by Michael Kay [SAXON] for
this project, because Clark chose to bundle SAXON with Jing.

CHAPTER 5. IMPLEMENTATION 37

5.6 The RELAX NG Schema
The bulk of what is allowed in HTML5 is encoded in a RELAX NG schema. The
schema customizability framework and the core of the schema were developed by
Elika Etemad [HTML5RNG]. I extended the schema with definitions for Web Forms
(both 1.0 and 2.0) and with definitions for elements introduced in HTML5. I also in-
tegrated the schema with a custom datatype library.

For the most part, the element nesting conformance requirements for HTML5
are defined in terms of simple parent-child relationships. That is, it is defined that a
given element may have children of a given type. These sorts of requirements map
trivially to a grammar.

DTDs allow only one grammar production per element name. HTML5,
however, requires different grammar productions in different contexts. For ex-
ample, the attributes allowed for list items depend on the kind of list the items are
in. Fortunately, RELAX NG decouples grammar productions from element names.
There can be an arbitrary number of grammar productions for a given element
name. This makes it possible for elements to have different attributes or content
models depending on where the elements occur in the document. For example, the
form element has an empty content model when it occurs as a child of the head
element whereas it can have child elements when it occurs as a descendant of the
body element.

In HTML5, some elements are defined to take either block-level children or
inline-level children but not both at the same time. Such content models are called
bimorphic. In HTML 4.01, those elements generally allowed a mix of block and in-
line content, because DTDs cannot express the kind restriction demanded by
HTML5. Fortunately, RELAX NG can deal with bimorphic content models. When a
RELAX NG validator sees an element, the element can have multiple pending de-
rivations in the grammar. Therefore, adjacent subtrees can influence each other in
validation.

The vast majority of the conformance criteria related to the document structure
can be expressed as a RELAX NG grammar. In the implementation, I have favored
the use of RELAX NG whenever practical. Still, many conformance criteria are not
conveniently expressible in a RELAX NG grammar. Schematron and custom Java
code are used for those criteria.

Expressing constraints related to ancestry turned out to be impractical in
RELAX NG, even though it is theoretically possible. Balancing the needs of the
main conformance checking use case and the expected reuse of the RELAX NG
schema, for e.g. guiding auto-completion in an editor (page 63), turned out to be a
problem. From the conformance checking point of view, it makes sense to handle
more things in Schematron, because special cases of constraints on element ancestry
are trivially expressed in Schematron with precise error messages whereas “remem-
bering” ancestry in a grammar generally requires duplicating grammar produc-
tions. This would lead to unmanageable growth of the number of grammar

38 AN HTML5 CONFORMANCE CHECKER

productions. Eventually, I favored Schematron at the expense of the applicability of
the schema to RELAX NG-only use cases.

5.6.1 The General Schema Design
The schema is divided into modules. The module division is motivated both by
grouping similar elements together and by making it possible to easily subset the
schema in ways deemed reasonable by the schema authors. The schemata for differ-
ent subsets include the modules that are enabled for the particular subset.

5.6.2 Common Definitions
A module called common.rnc, developed by Elika Etemad, includes definitions for
the schema framework. It contains switches for parameterizing the schema, initial
definitions for common content models, definitions for common attributes and
definitions for common datatypes. It also designates the grammar start symbol, i.e.
the root element.

Common Content Models. The common.rnc module initializes the definition for
classes of elements as follows:
common.elem.strict-inline =

(notAllowed)

common.elem.struct-inline =
(notAllowed)

common.elem.block =
(notAllowed)

common.elem.embedded =
(notAllowed)

Other modules then add to these definitions. For example, the following makes the
p element allowed where block elements are allowed.
common.elem.block |= p.elem

The |= connector redefines the named pattern on the left-hand side to be the choice
between right-hand side and the previous definition of the left-hand side.

The common.rnc module also defines common content models using the defin-
itions for common element classes:
common.inner.strict-inline =

(text & common.elem.strict-inline*)

common.inner.struct-inline =

CHAPTER 5. IMPLEMENTATION 39

(text & common.elem.struct-inline*)

common.inner.block =
(common.elem.block*)

common.inner.bimorphic =
((text

& (common.elem.struct-inline
| common.del.block
)*

)
| (common.elem.block

| common.del.struct-inline
)*

)

The bimorphic case is more complex, because the structured inline alternative has
to allow deleted block content and vice versa. The definitions for common content
models are not augmented directly by other modules.

Common Attributes. HTML5 defines a handful of attributes that apply to all
HTML elements. A pattern called common.attrs is defined in common.rnc. The
pattern serves as a reusable pattern for element definitions and provides an exten-
sion point for modules that add attributes which apply to all elements. For ex-
ample, including the module for scripting adds event handler attributes to all
elements.

Common Datatypes. Many attributes in HTML5 take values that are required to
conform to a specific format. In RELAX NG, such formats are known as datatypes.
As discussed earlier (page 21), datatypes in RELAX NG only constrain the space of
allowable string values and do not imply infoset augmentation or data binding. Ex-
cept for datatypes related to HTML forms and enumerated string values, the data-
types used to constrain attribute values are defined in common.rnc.

When possible, the W3C XML Schema Datatypes [RNG-XSD] are used in order
to make the schema more easily portable to different RELAX NG validators. In par-
ticular, the regular expression facet of the W3C XML Schema Datatypes is used. For
example, percentage values are defined as follows:
common.data.percent =

xsd:string {
pattern = "(100)|([1-9]?[0-9](\.[0-9]+)?)%"

}

[0-9] is used in the example above because in XSD regular expression the \d
shorthand matches any character classified as Nd (decimal digit) in Unicode.

40 AN HTML5 CONFORMANCE CHECKER

When the permissible lexical space of a datatype does not form a regular lan-
guage or when the lexical space would in theory form a regular language but writ-
ing it down as a regular expression would be impractical, datatypes from the
custom-built HTML5 Datatype Library (page 43) are used. For example, datatypes
involving dates and IRIs are handled using the custom-built library (w is bound to
the HTML5 Datatype Library).
common.data.datetime =

w:datetime-tz

common.data.uri =
string "" | w:iri-ref

It is important to note that using a custom datatype library makes the schema less
portable. To use the schema the RELAX NG validator needs to have an implement-
ation of the datatype library available to it. An alternative less precise version of the
schema could be made if portability was appreciated over correctness.

Parameter Switches. RELAX NG has two special patterns that can be used to im-
plement Boolean feature switches. These patterns are empty and notAllowed. The
empty pattern takes no attributes or element content to satisfy. The notAllowed is
never satisfied. Hence, interleaving empty with another pattern is equivalent to the
other pattern alone and interleaving notAllowed with another pattern makes the
interleave unsatisfiable as a whole. Thus, a named pattern can be used in a schema
and the effect of the pattern can be changed by changing the definition of the
named pattern from empty to notAllowed as needed. RELAX NG makes this easy
by allowing a schema file that includes another to override definitions in the file
that is being included.

For example, the p element has a more versatile content model in XHTML5 than
in HTML5. In XHTML5, structured inline children – that is, inline mixed with select
primarily block elements such as ul – are allowed. (The HTML5 serialization can-
not allow elements that were block elements in HTML 4.01 as children of p due to
backwards compatibility considerations.)

This distinction is handled using a switch called nonHTMLizable. It is defined
in common.rnc as nonHTMLizable = empty which is what is needed for
XHTML5. To flip the switch for HTML5, common.rnc is included as follows:
include "common.rnc" {

nonHTMLizable = notAllowed
}

The switch pattern is then used like this:
p.inner =

(common.inner.strict-inline
| (common.inner.struct-inline

& nonHTMLizable

CHAPTER 5. IMPLEMENTATION 41

)
)

When nonHTMLizable expands to notAllowed, the right-hand size of the | con-
nector becomes unsatisfiable causing the p.inner production to become equival-
ent to common.inner.strict-inline.

When nonHTMLizable expands to empty, p.inner becomes equivalent to
common.inner.struct-inline because common.inner.strict-inline is
defined to be a subpattern of common.inner.struct-inline.

5.6.3 Examples of Elements
The RELAX NG implementation for a typical element looks like this:
blockquote.elem =

element blockquote { blockquote.inner & blockquote.attrs }
blockquote.attrs =

(common.attrs
& blockquote.attrs.cite?
)
blockquote.attrs.cite =

attribute cite {
common.data.uri

}
blockquote.inner =

(common.inner.block)

The element is given a named definition: blockquote.elem. The definition
simply expands to an element pattern for the element in question. The content
model is defined to be an interleaving of two named patterns: one for element con-
tent (blockquote.inner) and another for attributes (blockquote.attrs).

The named pattern for attributes is defined as the interleaving of common at-
tributes and element-specific attributes. In this case, the only element-specific attrib-
ute (cite) is optional, hence the ? quantifier. Next, the named pattern
(blockquote.attrs.cite) for the element-specific attribute is defined. The
datatype for the attribute refers to a common datatype definition.

The named pattern for the element content (blockquote.inner) is merely
defined to map to the common content model for elements that accept only block
children (common.inner.block).

Other elements are defined analogously. Of course, the definitions for other ele-
ments tend to become more complex. For example, this is the definition for
datetime form controls:
input.datetime.elem =

element input { input.datetime.attrs }
input.datetime.attrs =

42 AN HTML5 CONFORMANCE CHECKER

(common.attrs
& common-form.attrs
& input.datetime.attrs.type
& common-form.attrs.accesskey?
& input.attrs.autocomplete?
& common-form.attrs.autofocus?
& input.attrs.list?
& input.datetime.attrs.min?
& input.datetime.attrs.max?
& input.attrs.step.float?
& common-form.attrs.readonly?
& input.attrs.required?
& input.datetime.attrs.value?
)
input.datetime.attrs.type =

attribute type {
string "datetime"

}
input.datetime.attrs.min =

attribute min {
form.data.datetime

}
input.datetime.attrs.max =

attribute max {
form.data.datetime

}
input.datetime.attrs.value =

attribute value {
form.data.datetime

}

input.elem |= input.datetime.elem

The notable detail in this more complex example is that the reference to
input.datetime.attrs.type is not quantified. Hence, the type attribute with
the value “datetime” is required. This definition for the input element is com-
bined with the other definitions with different type attributes using the choice con-
nector (input.elem |= input.datetime.elem). This means that the value of
the type attribute serves as a discriminator for determining which patterns apply
even though the name of the element remains the same.

5.7 The HTML5 Datatype Library
I discovered that a custom datatype is needed in the following cases:

CHAPTER 5. IMPLEMENTATION 43

• When the lexical space of a datatype is not a regular language or when it is but
formulating it as a regular expression would be particularly hard or
inconvenient.

• When the lexical space of a datatype is a regular language, but the grammar
would require a lot of literal strings (e.g. registered language codes or character
encoding names) embedded into it.

• When checking the value requires calendar calculations.
I developed a custom datatype library to address these cases. I also wrote a draft
specification for the abstract library [HTML5Datatypes], so that the library could be
implemented in other programming languages without having to inspect the Java
source to see what it does.

5.7.1 Dates
On the surface, it would seem that the last case is unnecessary considering that the
XSD datatypes [XSDDatatypes] include a dateTime type that can be constrained
through its regular expression facet. However, the XSD dateTime is inappropriate
for HTML5 in a subtle way. With the XSD type, leading and trailing white space is
discarded before the pattern is matched, so there is no way of forbidding surround-
ing white space. The Web Forms 2.0 date and time types do not allow surrounding
white space. Hence, custom types are needed.

Discarding surrounding white space as part of the data type makes the data
type library less flexible. Any data type that does not allow white space at all
(neither surrounding the meaningful value nor inside the value) can be used in a
way that allows surrounding white space by wrapping it in the RELAX NG list pat-
tern so that a single-token list of white space-separated tokens results.

5.7.2 IRIs
In addition to dates, it turns out that custom types for IRIs and language tags are
called for, even though the repertoire of XSD types includes data types for these.

The XSD anyURI datatype is not useful. Its definition has changed with each
edition and version of the specification. In the first edition of version 1.0 [XSDData-
typesFE], which predated the IETF IRI specification [RFC3987], the definition im-
plied that not all strings are valid anyURI values. Indeed, the Jing [Jing] imple-
mentation does not allow all possible strings. In the second edition of version 1.0
[XSDDatatypes], which was finalized after the Jing implementation had been re-
leased, the definition suggested that different implementation levels could treat dif-
ferent lexical spaces valid. In a February 2006 working draft of the 1.1 version
[XSDDatatypes11WD], the definition conceded that any finite string is a valid
anyURI.

For these reasons, I developed custom datatypes for IRIs (only absolute) and IRI
references (either relative or absolute). The major problem with deciding whether a

44 AN HTML5 CONFORMANCE CHECKER

string is a conforming IRI is that the generic IRI syntax is not restrictive. Instead, in-
dividual IRI schemes, such as http, mailto and ftp, are allowed to specify their
own syntax. An implementation working only on the generic IRI level would pass
just about any string as a valid IRI reference. On the other hand, it would be im-
possible to implement scheme-specific knowledge of future or private IRI schemes.
Even implementing support for all the IANA-registered IRI schemes would be im-
practical. In fact, these problems were the reason (in addition to the XSD datatypes
predating the IRI specification) for the fuzzy definition of anyURI. Still, it would be
a pity not to help authors with scheme-specific issues related to the most commonly
used schemes – the http scheme in particular.

The obvious solution is to implement scheme-specific checking for the most
common schemes and apply only generic processing to the rest. However, leaving
the decision on what scheme-specific checking to support to implementations of the
abstract datatype library specification would make implementations uninteroper-
able. As a compromise, I wanted to include scheme-specific knowledge of the
schemes that are specifically covered by the Web Forms 2.0, but not all of them
were covered within this thesis project. I used the Jena IRI library [Jena] to provide
scheme-aware support for the http [RFC2616] https [RFC2818], ftp [RFC1738]
and file [RFC1738] schemes. However, the Jena IRI library does not have scheme-
specific knowledge about the mailto [RFC2368], data [RFC2397] and
javascript [javascriptURI] schemes. Support for the javascript scheme
would require using the Rhino JavaScript library [Rhino] for syntax checking in-
stead of using the Jena IRI library. I did not implement support for the mailto,
data and javascript schemes within the scope of this thesis project. I left sup-
port for them as possible future work (page 65).

5.7.3 Language Tags
The HTML lang attribute and the XML xml:lang attribute take a language tag
identifying a human language as their value. Until recently, language tags were
defined by [RFC3066]. Now that specification has been made obsolete by [RFC4646]
and [RFC4647]. A language tag consists hyphen-separated subtags.

Different subtags have different lengths. Moreover, the permissible list of values
is restricted to private use subtags (starting with x-) and values that are in the In-
ternet Assigned Numbers Authority (IANA) subtag registry [LangTagRegistry].
The XSD definition for language is significantly more coarse: the lexical space is
defined to be 1–8 ASCII letters followed by zero or more hyphen-separated subtags
consisting of 1–8 ASCII letters and/or digits [XSDDatatypes].

A custom datatype can do much better if it implements checking against the
syntax defined in [RFC4646] and also contains data from the IANA registry. I chose
and partially implemented this approach. However, the implementation was not
finished within the scope of this thesis project.

Making the lexical space of a datatype dependent on a registry that changes
over time poses a versioning problem. However, as long as implementations

CHAPTER 5. IMPLEMENTATION 45

document when their IANA registry snapshot was taken, introducing new lan-
guage tags will not be a significant problem. Introducing new values to the registry
will expand the valid lexical space without making any previously conforming doc-
uments non-conforming. This is in contrast with the IRI scheme issue. Introducing
support for a previously unsupported IRI scheme would narrow the valid lexical
space.

5.7.4 ECMAScript Regular Expressions
Web Forms 2.0 introduces an attribute called pattern for form controls that accept
textual input. The attribute specifies a regular expression that the value of the form
control must match. Web Forms 2.0 does not define its own regular expressions. In-
stead, ECMAScript regular expressions [ECMA262] are used. When ^(?: is pre-
pended to the value of the pattern attribute and)$ is appended to it, the result-
ing string is required to be a conforming ECMAScript regular expression. The data-
type library handles the checking of ECMAScript regular expression syntax by
wrapping the regular expression parser of Rhino [Rhino].

5.8 The Schematron Schema
A Schematron schema was used where RELAX NG did not work conveniently and
where using custom Java code was not strictly necessary. Surprisingly, the use
cases for Schematron turned out to be narrower than originally expected.

5.8.1 Exclusions
While grammars are very good at enforcing parent-child relationships, they are not
good at enforcing ancestor-descendant relationships, because in the absence of in-
tersections and negations, some of the productions would have to “remember”
what kind of ancestors of interest there have been. Suppose element A is not al-
lowed to have element B as a descendant. In this case, all the elements that can oc-
cur on the ancestry path from B to A would need to have two grammar production-
s: one that can be derived from the root without an intervening A element and one
that cannot. Moreover, if there were more such exclusions, the number of parallel
grammar productions per neutral element would double for each exclusion rule.
Obviously, this could be a serious maintainability problem.

Fortunately, exclusions are extremely easy to express in Schematron. The forbid-
den descendant element is used as the context node for an assertion, which then
states that the context node must not have as an ancestor an element that forbids
the context element as its descendant.

For example, this Schematron pattern causes blockquote elements that are
descendants of header elements to be reported as errors.

46 AN HTML5 CONFORMANCE CHECKER

<rule context="h:blockquote">
<report test="ancestor::h:header">

The blockquote element cannot appear as a
descendant of the header element.

</report>
</rule>

The Schematron wrapping of the XPath expressions is rather verbose, but the ex-
pressions themselves are simple. The expression h:blockquote matches the
blockquote element in the XHTML namespace. (The prefix h is bound to the
XHTML namespace.) The rest of the rule is only applied if the context expressions
matches, and in that case, the blockquote element is used as the XPath context for
the second expression ancestor::h:header. This expression matches header
elements (in the XHTML namespace) that are also ancestors of the context node. If
the set of matching nodes is non-empty, the natural-language error message is
reported.

5.8.2 Required Ancestors
Opposite to exclusions, there are also checks for required ancestors. Specifically, the
Web Forms 2.0 repetition model requires form inputs for moving and removing re-
petition blocks to have a repetition block or a repetition template as an ancestor.

The checks are of the following form:
<rule context='h:input[@type=move-down]'>

<assert test='ancestor::h:*[@repeat]'>
An input element of type="move-down"
must have a repetition block or a
repetition template as an ancestor.

</assert>
</rule>

The context matches input elements in the XHTML namespace that have an attrib-
ute named type that has the value move-down. The assertion test matches ancest-
ors of the context node that are in the XHTML namespace and have an attribute
named repeat. This rule is correct for pure (X)HTML5 documents but is not suffi-
cient for compound documents. Support for compound documents (mixing
XHTML with e.g. SVG and MathML with the Web Forms 2.0 repetition model) was
left outside the scope of this master’s thesis project.

5.8.3 Referential Integrity
It turns out that RELAX NG is not good for enforcing referential integrity. Enfor-
cing referential integrity means checking cases where an attribute value is required
to be a reference to the ID of another element. RELAX NG has an optional extension
called RELAX NG DTD Compatibility [DTDCompat]. This extension makes it

CHAPTER 5. IMPLEMENTATION 47

possible to check that values designated as ID references actually refer to IDs in the
same document. However, that is all it can check. Moreover, enabling this extension
places restrictions on the ambiguity of the schema, which makes schemata harder
to write in some cases. Due to the limitations of RELAX NG DTD Compatibility, I
moved all ID-related checking away from RELAX NG. Most cases are handled in
Schematron.

In Schematron, referential integrity checking builds on the XPath id() function.
The argument of the function is coerced into a string that is split on white space.
The return value is a node set containing the elements that have an ID equal to any
of the tokens split from the argument.

The use of the id() function has two crucial differences compared to testing
equality against the values of two attributes. First, the function operates on IDness
and not on the names of attributes. Second, the argument is split on white space to
produce a list of tokens, so the function works for the case where multiple IDs are
referenced (IDREFS in DTD terms).

The concept of IDness is part of XML 1.0 itself. The IDness is established by pro-
cessing a DTD that declares certain attributes to have the type ID. The DTD-based
type of attributes is data that is exposed through the core SAX interface. More pre-
cisely, it is exposed via the getType() methods of the Attributes interface. The
XPath implementation determines which attributes should be considered to be of
type ID by calling one of the getType() methods.

In the case of the HTML5 serialization, there is no DTD processing whatsoever
involved. The parser simply assigns IDness to the attribute named id and exposes
this through SAX.

In the case of the XML serialization (XHTML5), IDness that is not based on DTD
processing is assigned between the parser and the validation SAX handlers. Imme-
diately after the parser in the pipeline, there is a SAX filter that constitutes an “xm-
l:id processor” as per [xmlid]. Immediately after the xml:id processor, another SAX
filter performs similar ID assignment on attributes named id that are not in a
namespace and belong to an element that is in the XHTML namespace. This second
filter could be called an “XHTML id processor”.

With ID assignment performed before the Schematron stage, Schematron can be
used to check that referents are of the right kind. For example:
<rule context='h:input[@list]'>

<assert test='id(@list)/self::h:datalist or
id(@list)/self::h:select'>

The list attribute of the input element must
refer to a datalist element or to a select element.

</assert>
</rule>

48 AN HTML5 CONFORMANCE CHECKER

5.9 The Non-Schema-Based Checkers
It turns out, as expected, that HTML5 has conformance requirements that cannot be
expressed in RELAX NG or Schematron or that would be inconvenient to express in
RELAX NG or Schematron. Checking for such requirements is handled by non-
schema-based checkers.

Conceptually, a non-schema-based checker listens to parse events and does
whatever is necessary and computable to identify the kind of conformance require-
ment violations that the checker is designed to handle. In practice, a non-schema-
based checker is a Java class that implements the SAX ContentHandler interface
and reports to a SAX ErrorHandler. Since non-schema-based checkers are imple-
mented in a full programming language, they can check for any machine-checkable
conformance requirement.

To make the non-schema-based checkers fit into the Jing-based architecture, I
wrote a wrapper class that implements the Jing Validator interface. With this
wrapper class, the non-schema-based checkers conform to the same interface as the
schema-based validators and can be combined into the same validation pipeline.
Every non-schema-based checker is also given a URI so that they can be instanti-
ated by URI in the extended validation user interface just like validators instanti-
ated from schemata identified by URIs.

The organization of checks for different requirements into different non-schema-
based checkers is a matter of software design. After all, the specification does not
mandate a particular code organization. If every requirement is implemented as a
separate checker, there will be a lot of code duplication, since many checkers need
to do similar things. On the other hand, implementing everything in a single check-
er would make the code unmaintainable. The organization below reflects my
design decisions.

Developing checkers to cover all of HTML5 was deemed to be out of the scope
of this thesis project. Instead, I implemented a selection of prototype checkers as a
proof of concept.

5.9.1 Table Integrity Checker
A table integrity checker was chosen as the main proof of concept non-schema-
based checker. I deemed table integrity the most complex of the requirements that
call for a non-schema-based checker making it ideal for proving by implementation
that the approach works. Also, purely schema-based validators are incapable of
checking table integrity and table integrity has notable relevance to table rendering
in browsers, so table integrity checking makes for a good demo. The source code of
the table integrity checker is presented in the appendix (page 93).

HTML Tables. Since the table model for (X)HTML5 was only being specified when
the checker was prototyped in November 2006, the checker was speculatively based
on the HTML 4.01 table model [HTML401] and browser behavior. The differences

CHAPTER 5. IMPLEMENTATION 49

from HTML 4.01 are that colspan='0' is treated as colspan='1' and that
headers must refer to th cells as per [HixieTables]. The top left corner of cells is
placed in the first available slot on the row, which is browser-compatible but differ-
ent from what the CSS2 specification [CSS2] says.

An HTML table has a Cartesian grid of slots. A cell can span multiple slots. Sub-
sequent cells are moved to the right until a free slot for the top left corner of the cell
is found. When cells span multiple rows, this slot allocation policy can lead to over-
lapping cells.

Class Division. The table integrity checker consists of seven classes:
TableChecker, Table, RowGroup, Cell, ColumnRange,
HorizontalCellComparator and VerticalCellComparator. The
TableChecker class is the non-schema-based checker class used by other code
and the rest of the classes are internal to the checker.

TableChecker maintains a stack of Table instances. When a startElement
event for the table element is seen, a new Table instance is pushed onto the
stack. Likewise, the stack is popped upon seeing an endElement event for table.
The rest of table-significant events (startElement and endElement for the col,
colgroup, thead, tbody, tfoot, tr, td and th elements) are delegated to the
Table object at the top of the stack.

Table maintains the state of where in the table markup (e.g. in table row inside
an explicit row group like tbody) the parse currently is. The Table object only sees
table-significant parse events. If an event occurs out of the permitted sequence (e.g.
a cell start occurs when the state is not in a table row) the whole subtree of mis-
placed elements is silently ignored at that point by counting starts and ends. Re-
porting this as an error is left to the RELAX NG validator.

Table maintains a linked list ColumnRanges. A ColumnRange represents a
contiguous range of columns that has been established e.g. by the col element but
does not yet have any cells starting in the range. A ColumnRange knows its start
and end column slot indexes. In contrast to e.g. an array of column slots, the
memory usage of this data structure is proportional to the number of ranges rather
than the size of the ranges. Therefore, the memory usage can be throttled down by
limiting the number of elements that are processed, which can indirectly be
throttled by limiting the size of documents (in bytes). A malicious content author
cannot make the checker allocate excessive amounts of memory by declaring a
column group that spans an immense number of column slots.

Table also has the responsibility of instantiating RowGroups. The thead,
tfoot and tbody elements establish explicit row groups represented as
RowGroup objects. In XHTML, tr elements may occur as children of the table ele-
ment. This case is treated as an implicit row group also represented by RowGroup.
(In HTML, the parser infers a wrapping tbody.) Since table cells are assigned to
slots on a per-row group basis in (X)HTML, the Table only instantiates Cell ob-
jects and gives them to the current RowGroup for slot allocation.

50 AN HTML5 CONFORMANCE CHECKER

Slot Allocation. A Cell knows the column index where it starts and where it ends
horizontally. It also knows the row until which it spans vertically. RowGroup main-
tains a set of cells that span more than one row and that are still in effect – that is,
the first row onto which they do not span has not passed yet. As with
ColumnRanges, the data structure does not involve allocating a two-dimensional
array of slots. Therefore, the memory requirements are bounded in proportion to
the number of cell elements rather than the number of slots that cells are declared
to span.

When a Cell spans more than one row, it is added to the set of Cells that are
in effect. When a row ends, Cells that are no longer in effect are culled from the
set. When a new row starts, the Cells that are in effect are sorted according to their
start column index. A new Cell on the row get its top left corner assigned to the
first free slot on the row. Slots occupied by Cells that are still in effect (i.e. span
down from earlier rows) are skipped. When a Cell is allocated to particular slots,
this is reported back to Table, so that the list of ColumnRanges without cells can
be adjusted accordingly. Because cells cannot span across row groups, if the set of
Cells in effect is not empty when the row group ends, an error is reported for each
Cell still in the set. If there are ColumnRanges left in the linked list when the table
ends, the ranges without cells starting in them are reported.

Detected Conditions. The checker emits both warnings and errors. Since Web Ap-
plications 1.0 is still a draft, it is too early to tell which conditions should be treated
as errors eventually. The rest will be just warnings.

The following conditions are detected:
• A table cell is overlapped by a later table cell.
• A table cell overlaps an earlier table cell. (A single overlap is reported in both

directions to show source location for both cells.)
• A table cell spans past the end of its row group.
• A row has no cells starting on it.
• The column count on a table row is greater than the column count established

by cols/colgroups.
• The column count on a table row is less than the column count established by

cols/colgroups.
• The column count on a table row is greater than the column count established

by the first row in the absence of cols/colgroups.
• The column count on a table row is less than the column count established by

the first row in the absence of cols/colgroups.
• The headers attribute does not point to th elements in the same table. (This fea-

ture was based on speculative information and will likely have to be revisited as
the specification matures.)

• A column range has no cells starting on it.

CHAPTER 5. IMPLEMENTATION 51

• The value of a colspan attribute exceeds 1000, which is a magic number in
Gecko (and according to comments in Gecko source, also in IE and Opera)
[TableCell].

• The value of a rowspan attribute exceeds 8190, which is a magic number in
Gecko [TableCell].

• A col element causes a span attribute to be ignored on the parent colgroup.
(Conforming in HTML 4 / XHTML 1.0; non-conforming in (X)HTML5. With
(X)HTML5, there is also a schema-level error.)

5.9.2 Checking the Text Content of Specific Elements
The new time, meter and progress elements have a specific format for their text
content. HTML5-aware user agents are required to parse the text content but the
content serves as a fallback in legacy user agents. RELAX NG makes it possible to
constrain the text content of an element if the element only has text content and no
child elements. In HTML5, the elements with a specific text content format are al-
lowed to have child elements. Hence, merely developing a custom datatype and us-
ing it from the RELAX NG schema would not work exactly the right way.

A Java-based RELAX NG-aware XML editor may make it possible to use custom
datatype libraries but is unlikely to allow non-schema-based checkers. In such a
case, text content checking may be valued higher than child elements. In anticipa-
tion of this use case, I implemented checkers for the particular text content formats
as classes that implement the Datatype interface from the Java API for custom
RELAX NG datatypes [DatatypeAPI]. The non-schema-based checker then uses
these Datatype implementations to check the text content of particular elements.

The Java API for custom RELAX NG datatypes supports streaming reporting of
text content to a Datatype implementation. The Datatype interface has a method
called createStreamingValidator which returns an object that implements an
interface called DatatypeStreamingValidator. Character data can be reported
to a DatatypeStreamingValidator in chunks the same way as the SAX inter-
face handles reporting of character data. The non-schema-based checker simply
maintains a stack of active DatatypeStreamingValidators and reports the SAX
character data to every DatatypeStreamingValidator on the stack.

The instantiation rules for the DatatypeStreamingValidators are hard-
coded. The non-schema-based checker could in theory be generalized to accept
parameters from the outside stating which elements require which Datatype to be
instantiated. However, hard-coding these rules was simple and sufficient to meet
the objectives of this project.

When a DatatypeStreamingValidator on the stack is about to be popped –
that is, the end of the element is seen – the DatatypeStreamingValidator is
queried whether it accepts the reported content or not. If it does not accept the re-
ported content, the non-schema-based checker reports an error.

52 AN HTML5 CONFORMANCE CHECKER

5.9.3 Checking for Significant Inline Content
HTML5 introduces a concept of significant inline content. Significant inline content
consists of embedded content (such as an img element) or significant text. Signific-
ant text is defined to be text that contains any character that is not in the Unicode
categories Zs, Zl, Zp, Cc and Cf.

HTML 4.01 stated: “We discourage authors from using empty P elements. User
agents should ignore empty P elements.” [HTML401] As a result, markup generat-
ors started to generate paragraphs containing a single NO-BREAK SPACE. In
HTML5, a NO-BREAK SPACE does not count as significant text, since it is in the
Unicode category Zs. I believe that this kind of conformance definition and work-
around arms race is not productive. However, since the requirement was in the spe-
cification draft, I developed a checker. This a simple example of a non-schema-
based checker. Having this checker also makes it possible to test the requirement of
significant inline content with existing Web pages to see how realistic the require-
ment is.

The checker maintains a stack corresponding to open elements. The stack keeps
track of which currently open elements have significant inline content. Character
data is tested against an ICU4J UnicodeSet [ICU4J] that represents the characters
in the above-mentioned Unicode categories. When characters or elements that con-
stitute significant inline content are encountered the current stack nodes are
marked as having significant inline content.

The checker for significant inline content demonstrates that non-schema-based
checkers for particular requirements can be very simple and straightforward.

5.9.4 Unicode Normalization Checking
In order to develop a prototype checker for a potential requirement that needs
checking not only in the SAX handlers but also in the parser, I prototyped a checker
for Unicode normalization.

Character Model for the World Wide Web 1.0: Normalization [CharmodNorm] is still
in the Working Draft state. Nonetheless, a checking for compliance was prototyped
as if the normalization specification was a normative part of (X)HTML5. This way,
the feasibility of the requirements of Character Model for the World Wide Web 1.0:
Normalization could be evaluated.

Requirements. The definition for Fully-normalized Text involves checking normal-
ization before and after parsing. That is, the source text is required to be in Unicode
Normalization Form C [UAX15]. After parsing the “constructs” parsed out of the
source are required to be in Unicode Normalization Form C and are required not to
start with a “composing character” (which is not exactly the same as a “combining
character” in Unicode).

In order to integrate normalization checking of the unparsed character stream
into Ælfred2, special-case decoding for US-ASCII, ISO-8859-1, UTF-8, UTF-16 and

CHAPTER 5. IMPLEMENTATION 53

http://www.w3.org/TR/charmod-norm/#sec-FullyNormalized

UTF-32 was removed and all character decoding was unified to use the
java.nio.charset framework [NIO].

The definition involves peeking underneath the parser, which might be con-
sidered a violation of abstraction layers. However, the requirement of checking the
unparsed source text does have the benefit that if the source is in Unicode Normal-
ization Form C, the document cannot be accidentally broken by editing it in a nor-
malizing text editor, as a text editor touches the unparsed text.

Interpretation. Character Model for the World Wide Web 1.0: Normalization does not
define what “constructs” are in the context of XML 1.0 or HTML5. However, XML
1.1 [XML11] does define what “relevant constructs” are, so that the definition might
be generalizable to XML 1.0 and HTML5. Unfortunately, XML 1.1 defines relevant
constructs in terms of the grammar productions of XML itself instead of the signi-
ficant information items that an XML processor reports to the application. As a res-
ult, the XML 1.1 definition is not particularly useful in practice.

Since XML 1.0 and HTML5 do not have a definition for “constructs”, a defini-
tion that makes sense was devised for the purpose of prototyping. [C14N] and the
SAX ContentHandler interface (page 31) were used as indicators of what the
meaningful constructs in XML are once the differences in syntactic sugar are out of
the way. This gave the following definition of constructs:
• Local names of elements
• Local names of attributes
• Attribute values
• Declared namespace prefixes
• Declared namespace URIs
• Processing instruction targets
• Processing instruction data
• Concatenations of consecutive character data between element boundaries and

processing instructions ignoring comments and CDATA section boundaries.

Implementation. As with the checker for significant inline content, the implement-
ation turns out to be rather simple. The checker outsources most work to ICU4J
[ICU4J]. An ICU4J UnicodeSet is used for testing whether a character is a com-
posing character. The ICU4J Normalizer class is used for testing Unicode
normalization.

Constructs that are exposed as Java Strings in the SAX API are very simple to
check. The first character is checked against the above-mentioned UnicodeSet and
the whole string is passed to the Normalizer for normalization checking.

Character data, however, is checked in a piecewise manner. Most complexity in
the checker is due to trying to avoid buffering as much as possible while still using
the ICU4J API unmodified. Also, dealing with the halves of a surrogate pair falling
into different UTF-16 code unit buffers causes complexity by roughly doubling the

54 AN HTML5 CONFORMANCE CHECKER

http://www.w3.org/TR/2006/REC-xml11-20060816/#dt-relconst

lines of code compared to an implementation that was not supplementary plane-
aware. (UTF-16 is the character encoding used for strings in Java.)

The checker tries to check as much character data as possible by passing runs of
the SAX-provided buffer to ICU4J. However, normalization-sensitive data may con-
tinue over the buffer boundary, so the checker copies potentially normalization-
sensitive data near the buffer boundaries to its internal buffer which it later passes
to ICU4J. The ability to test for composing characters is used for finding safe points
for slicing buffers. By definition, it is always safe to slice buffers so that in piecewise
normalization checking each buffer slice being tested starts with a character that is
not a composing character.

Unfortunately, the column and line numbers reported on errors are very inac-
curate due to buffering. Due to the design of the SAX API, accurate column and line
positions are unavailable within a particular buffer of character data.

The normalization checking of the source text is performed by making the pars-
ers (both the HTML parser and the XML parser) instantiate the checker on the pars-
er level. Both parsers decode the incoming byte stream into a UTF-16 character
stream, which is then parsed. The buffers are passed to the checker as a side effect
of the parser reading the character stream.

5.10 Character Model Checking
Web Forms 2.0 requires documents to conform to Character Model for the World Wide
Web 1.0: Fundamentals [Charmod]. Therefore, checking for the conformance require-
ments that the character model places on content was investigated.

Since the recommendations of Character Model for the World Wide Web 1.0: Funda-
mentals deal with issues related to character encoding, the best opportunity for
checking whether a document conforms to specification is in the parser. Hence, the
checks were implemented in the parsers and not in the validation pipeline.

Some of the requirements were not machine-checkable and, thus, had to be
omitted. For example, the requirement “Specifications, software and content MUST
NOT require or depend on a one-to-one correspondence between characters and
the sounds of a language.” [Charmod] is not machine-checkable, because the check-
ing software cannot tell what the author expects of correspondence to sounds and if
the expectation is relied upon.

Many recommendations deal with the identification of the character encoding
and the use of preferred IANA-registered names. These checks were implemented
as part of the code that sets up the input stream decoding in the parsers.

In addition to the recommendations related to identifying the character encod-
ing, there were only three other machine-checkable recommendations. However, all
three are problematic in terms of reporting errors.

I deemed the recommendation “Publicly interchanged content SHOULD NOT
use codepoints in the private use area.” [Charmod] worth a warning (only once per
document), because human judgment is needed in order to decide when the private
use area is used in a legitimate way. For example, it is legitimate to use the private

CHAPTER 5. IMPLEMENTATION 55

use are to encode scripts that have not yet been assigned official Unicode code
points or that will not included in Unicode as a matter of policy (such as Tengwar
or Klingon which have been constructed to support particular works of fiction).
Moreover, another recommendation in [Charmod] denies forbidding the use of the
private use area.

I ignored the two other recommendation as too impractical when considered in
the light on real-world HTML authoring practice.

The first ignored recommendation reads: “Escapes SHOULD only be used when
the characters to be expressed are not directly representable in the format or the
character encoding of the document, or when the visual representation of the char-
acter is unclear.” [Charmod] The second one is: “Content SHOULD use the hexa-
decimal form of character escapes rather than the decimal form when there are
both.” [Charmod]

Using the five predefined entities in XML, using the HTML5 entities from the
specification or using numeric character references is harmless when it comes to the
parsed document tree. In XML decimal and hexadecimal character references work
equally well. In HTML, the decimal form actually works better in very old
browsers. Enforcing these recommendations would mean proclaiming a prevalent
authoring practice non-conforming on the grounds of the aesthetic preferences per-
taining to source markup even when there is no difference in the post-parse docu-
ment tree. Moreover, Character Model for the World Wide Web 1.0: Fundamentals does
not give a solid machine-checkable definition for characters whose visual represent-
ation is unclear.

56 AN HTML5 CONFORMANCE CHECKER

Chapter 6

Shortcomings

The developed service has some shortcomings. The serious shortcomings pertain to
error messages. The less important shortcomings pertain to the software not being
quite as efficient in terms of performance as it could theoretically be.

6.1 Non-Ideal Error Messages
The foremost shortcoming of the conformance checker is the lack of useful detail in
the error messages emitted upon violations of the RELAX NG schema. This prob-
lem was anticipated before starting the project. Also, the users of development ver-
sions have identified the messages generated by the Jing validation engine as a not-
able problem.

Jing has a handful of different messages for RELAX NG validation failures.
They are all very concise. For example: “Element name not allowed in this context.”,
“Attribute name not allowed at this point; ignored.” and “Bad value for attribute
name.” The error messages are always correct, but they do not help the user under-
stand why something went wrong.

6.1.1 Bimorphic Content Models
When the permissibility of an element depends on something more complex than
the parent element, the error messages may confuse the user. For example, some
elements take either inline or block children but not both. Moreover, in HTML 4.01
Transitional these elements were generally allowed to take a mix of inline and block
children. Consider this fragment:
<div>foo<p>bar</p></div>

When the validation engine sees the p element, it has already committed to a deriv-
ation in the grammar that allows em as a child of div. That derivation is the inline
branch of the bimorphic content model. Hence, the p element is not allowed in the
derivation and the validation simply states that the element p is not allowed there.

57

This may be confusing, because div does allow p children in other situations. A
better error message would state that div only takes either inline or block children.

One way of addressing this problem would be allowing a mix of inline and
block children in the schema and using a non-schema-based checker for detecting
and reporting the mixed use of inline and block content as children of elements that
have a bimorphic content model.

6.1.2 Lack of Datatype Diagnostics
When the value of an attribute is not permissible according to the datatype of the
attribute, the validation engine emits a message simply stating that the attribute
had a “bad” value. No hint is given on why the value is bad.

The RELAX NG datatype API allows a datatype implementation to communic-
ate diagnostic messages to the validation engine in exception messages. However,
Jing does not expose these messages to the user. In theory, an ambiguous grammar
could cause the validation engine to test a single attribute value against multiple
datatypes, so there would not be a single diagnostic message. However, in practice
with many schemata it would be quite helpful to provide the diagnostic message
from at least one (usually the only) datatype that did not accept the value.

Even if diagnostic information were reported, there would be a further complic-
ation. In many cases the datatype is defined using a regular expression. If the regu-
lar expression does not match, there is no useful natural-language explanation
available.

6.1.3 Erroneous Source Is Not Shown
The error messages do not show the erroneous markup. For this reason it is unne-
cessarily hard for the user to see where the problem is.

6.2 Poor Localizability
Although the conformance checker is carefully internationalized in the sense that it
correctly handles input documents in any language and supports supplementary
characters in addition to the Basic Multilingual Plane of Unicode, the messages that
the conformance checker reports are available in English only and there is no mech-
anism in place for supporting other languages.

There are a number of problems related to the translatability of the messages
emitted by the software. Various libraries are used, so the ways in which messages
originate is not unified (except that all libraries emit English-language messages by
default). Some libraries have no localization facilities whatsoever. Other libraries do
have localization mechanisms but the mechanisms assume that the user interface
language is a property of the entire Java process and discovered from the environ-
ment of the process. However, this assumption does not hold for Web applications.
The locale of the server is uninteresting and instead Web applications should be

58 AN HTML5 CONFORMANCE CHECKER

able to vary the user interface language on a per-HTTP response basis. In addition
to these problems, the Schematron schema directly contains messages that are ex-
posed to the end user.

Instead of modifying the libraries themselves, an alternative approach to localiz-
ation would be reverse templating. The English messages would be matched
against known patterns that would allow the variable parts to be extracted. The
variable parts could then be plugged into a translated message corresponding to
the matched pattern.

In order to focus on HTML5 conformance checking instead of solving the trans-
latability problems discussed above, translatability of the user interface was left out
of the scope of this project.

6.3 Opportunities for Optimization
Some shortcomings relate to the implementation not being as efficient in terms of
performance as theoretically possible. These shortcomings are not necessarily prac-
tical problems and the achievable improvements may not be worth the effort that
would be required.

6.3.1 RELAX NG
The Jing RELAX NG engine took its current form in 2003. Back then, it was de-
signed to be compatible with Java 1.1. Dropping support for Java 1.1 opens up op-
portunities for performance optimizations by replacing thread-safe classes with
classes that perform the same tasks but do not use thread synchronization features.

When Java 1.0 and 1.1 were designed, all the classes in the standard library were
made thread-safe as a matter of policy. In retrospect, this has turned out to be a bad
policy. Often, a given object is only accessed from one thread, which makes syn-
chronized monitor entry and exit useless. When an object is shared between the
threads, it is likely that more than one standard class library object needs to be
mutated in an atomic operation, which means that the application needs to manage
the synchronization anyway. Even with modern virtual machine designs that can
make monitors biased towards one thread so that access from that thread does not
actually cause real inter-thread synchronization, class implementations that do not
use synchronization perform better in scenarios where thread-safety is not
necessary.

For compatibility with Java 1.1, Jing uses the Hashtable class instead of the
HashMap class introduced in Java 1.2 as part of the Collection API [CollectionsAPI].
Profiling the conformance checker with the NetBeans profiler [NetBeansProfiler]
shows that Hashtable$Entry is the second most common object (after char[])
in the memory allocation statistics in terms of number of live objects of a given
type. While this statistic does not indicate how often the methods of Hashtable
are called, it is still reasonable to expect the Hashtable class to be used a lot.
Therefore, replacing occurrences of the Hashtable class with the API-compatible

CHAPTER 6. SHORTCOMINGS 59

non-synchronized HashMap class would likely make RELAX NG validation slightly
faster.

The two other typical candidates for replacement with non-synchronized coun-
terparts are the Vector class and the StringBuffer class. They could be replaced
with ArrayList (introduced in Java 1.2) and StringBuilder (introduced in Java
5), respectively. Even though the instances of these classes are not as common as in-
stances of Hashtable and Hashtable$Entry, it would make sense to use the
non-synchronized counterparts in these cases as well.

6.3.2 Schematron
The Schematron implementation in Jing is based on XSLT [XSLT]. This is natural
considering that Schematron has been designed to be easily implementable as an
XSLT transformation on the document being validated. Inside the transformer, a
tree is built from the SAX parse events. The Schematron assertions fire when the en-
tire document has been reported to the XSLT transformer.

Also, Jing creates a short-lived helper thread that sleeps when the main thread
runs for fitting together API calls whose blocking behavior makes it impossible to
use them from one thread. The helper thread pretends to call into an XML parser
and then blocks itself and unblocks the main thread and allows the parse events
from the main thread to be reported as if coming from the XML parser that the
helper thread pretended to call.

This implementation approach has many points where it could be improved.
First, the helper thread can be eliminated by using an API that exposes the XSLT

engine as a SAX ContentHandler instead of insisting on the XSLT engine initiat-
ing the parse. I prototyped this approach and, indeed, it was possible to eliminate
the helper thread and the overhead associated with creating and destroying it.
Cursory testing locally without network suggested that this improved the through-
put (number of requests per unit of time) of the system by about 1%, but due to the
variation between test runs the figure should be considered inaccurate.

Second, even though Schematron is designed to be implementable in XSLT, run-
ning an XSLT transformation on a full XSLT implementation is more complex than
what would be minimally required to implement Schematron. The XSLT transform-
ation spends time creating a report document which is then converted to calls to the
SAX ErrorHandler. A Schematron implementation without XSLT could evaluate
XPath expressions on a tree model and produce error messages as necessary
without creating a report document.

Third, Schematron implemented by evaluating XPath expressions on a full doc-
ument tree causes all the messages to appear after the entire document has been
parsed and the tree built. In some cases, messages could logically be triggered
much sooner. For example, in the case of exclusions as soon as an element is seen
with a forbidden parent on the stack of open elements, an error message could be
produced. XPath expressions are classified based on when they can be evaluated in
[SchematronHeuristic]. In theory, a streaming XPath matcher could both produce
error messages during the parse and consume less memory. However,

60 AN HTML5 CONFORMANCE CHECKER

implementing such a streaming matcher for this project in particular would have
been (and still would be) too great a distraction from the main goals of the project.
If a streaming Schematron implementation was available off-the-shelf, using it
would be worthwhile.

Fourth, the project ended up using Schematron only for two simple purposes:
exclusions and referential integrity checking. For just these two purposes, Schemat-
ron in general and XSLT-based Schematron in particular is unnecessarily heavy. An
extremely simple hand-crafted non-schema-based checker could replace the
Schematron part of the system. A rough estimate based on the benchmarking the
throughput of the system with and without the Schematron part suggests that the
throughput of the system could increase by about 5% if the Schematron part was re-
placed with a hand-crafted non-schema checker. Moreover, such a checker would
make it extremely easy to emit errors related to exclusions as soon as logically
possible.

In summary, the best way to optimize the performance of the Schematron part
would be to treat it as a rapid prototype and replace it with hand-crafted code once
the HTML5 language requirements have stabilized and there is less need for the
conformance checker to be easily modifiable.

CHAPTER 6. SHORTCOMINGS 61

Chapter 7

Applicability in Other Contexts

Even though the focus of this thesis project was conformance checking, other ap-
plications for the schemata and Java code are briefly considered.

7.1 Auto-completion
Early on in the project I assumed that the RELAX NG schema would be directly us-
able in RELAX NG-aware XML editors for guiding the auto-completion. Auto-
completion gives element or attribute name suggestions to the user based on the
permissible names at a given point according to the schema and based on the start
of the name already typed by the user. RELAX NG-aware editors include nxml-
mode for Emacs [nxml-mode], oXygen XML [oXygen] and Etna [Etna]. Unfortu-
nately, during the course of the project it became apparent that in some cases
RELAX NG could in theory express a constraint but expressing it in Schematron or
in custom code would be easier and would provide better error messages. Exclu-
sions are the foremost class of constraints for which this is the case. Moreover, the
use of a custom datatype library makes the schema less portable.

If RELAX NG were able to combine patterns with intersection and negation con-
nectors, writing a schema for auto-completion would be easier. However, it would
not solve the problem that it would be hard for a generic RELAX NG validator to
generate better error messages for exclusions than what hand-crafted messages in a
Schematron schema can provide trivially.

7.2 Content Management Systems
Many content management systems in use today do not properly check the input
they accept. This leads to a situation commonly referred to as “garbage in garbage
out”. The content management systems serve erroneous markup if erroneous
markup has been entered into the system. The back end of the conformance checker
implemented in this project could be used in content management systems to check
input.

63

Content management systems written in Java could easily integrate the back
end of the conformance checker. However, to support other programming lan-
guages the conformance checker would need to expose a remote interface that
could be used from other programming languages with minimal client code. In
practice, it would make sense to implement such an interface as a Web service fol-
lowing the REST architectural style.

64 AN HTML5 CONFORMANCE CHECKER

Chapter 8

Future Work

Developing a full HTML5 conformance checker is too broad a task for a master’s
thesis project. For this reason, I developed the software to a point where the feasib-
ility of implementation is demonstrated in all areas, but I did not push every area to
completion.

8.1 Open Up
Even though the software developed in this project is Free Software / Open Source,
it has not been developed in a way that would make it easily approachable for po-
tential contributors. Perhaps the most pressing need for change in order to move
the software forward after the completion of this thesis is moving the software to a
public version control system and making building and deploying the software
easy.

8.2 The HTML5 Parsing Algorithm
I implemented the HTML parser speculatively before the HTML5 parsing al-
gorithm had been defined. The parser needs to be revised to implement the HTML5
parsing algorithm.

The parser is designed for the SAX API, which is a streaming API. The HTML5
parsing algorithm has error recovery features that require the parser to mutate
parts of the parse tree that have already been built in earlier stages of the parse.
This is incompatible with SAX. In order not to compromise streamability, the re-
vised parser would have to treat errors that require SAX-incompatible recovery as
fatal errors. This is allowed by the specification.

To make the parser reusable as a general-purpose HTML5 parser for other Java
programs, it would be desirable to also implement the full HTML5 parsing al-
gorithm including the SAX-incompatible parts. This would require a tree building
layer as an alternative to the tag inference filter that does not build an in-memory
tree. There could be an interface for pluggable tree builders. Tree builders could be

65

provided for DOM [DOM2], XOM [XOM] and a special-purpose tree designed for
efficient SAX event replay. A tree designed for SAX replay could store attributes as
objects implementing the SAX Attributes interface and could store character
data in char arrays as opposed to Strings.

A preliminary review of the HTML5 parsing algorithm indicates that the token-
izer would not need to be completely rewritten even though the tokenizer main-
tains its state implicitly in the runtime stack and the HTML5 parsing algorithm
maintains state explicitly. At the first sight, the HTML5 parsing algorithm appears
to allow state transitions that do not appear to correspond to normal returns on the
runtime stack. However, on a closer inspection the abnormal state transitions are al-
ways abrupt returns to the main loop and could be implemented as an exception
caught in the main loop.

8.3 Tracking the Specification
Since the conformance checker and HTML5 itself have been developed in parallel,
the conformance checker has been almost constantly more or less out of sync with
the specification. Ideally, future development should track the specification on a
near-daily basis instead of major synchronization work every few months.

Moreover, during this project, various small issues with no clear answer in the
specification were discovered. Once the issues are clarified in the specification, the
software needs to be updated accordingly. This list of known issues at the time of
the publication of this thesis is at [ValidatorAbout2007].

8.4 RELAX NG Message Improvements
The foremost problem with the RELAX NG-based approach to HTML5 conform-
ance checking is that the error messages that a generic validator can realistically
generate cannot be as good as messages written by a human being for specific
situations.

The first potential improvement is to expose the diagnostic messages from data-
type libraries to the end user. The second, also relatively simple, improvement
would be to mention the parent element of the element that is deemed forbidden in
a given context. With RELAX NG, the parent is not sufficient for explaining the
situation, but with HTML5 it usually is when exclusion are handled in Schematron.
No assessment was made to determine the feasibility of these changes, but the
changes do seem simple.

If the validation engine reported the misplaced element and its parent, an
HTML5-aware error message decorator could add natural-language descriptions
about the content model of the parent and the allowed contexts of the child.

The third more complex change would involve giving a hint of what kind of ele-
ments would have been allowed in place of the element that was not allowed. Even
if querying the schema in this way were possible to add to Jing, there would be the

66 AN HTML5 CONFORMANCE CHECKER

additional complication that RELAX NG-based expectations could still be wrong.
For example, exclusions expressed in Schematron could forbid some elements that
the RELAX NG schema would allow. For this reason, it may be better to focus on
the first two improvement ideas.

Alternatively, the suitability of MSV [MSV] as the RELAX NG engine for
HTML5 conformance checking should probably be reassessed with the attention on
the quality of diagnostic messages, even though Jing appears to be more robust
(page 37) is for use cases that involve arbitrary user-supplied schemata.

8.5 Completion of the Datatype Library
I did not complete the datatypes for IRIs and language tags within the scope of this
thesis project. Support for the data, mailto and javascript IRI schemes needs
to be added. Also, the implementation for the language tag datatype needs to be
completed.

8.6 More Non-Schema-Based Checkers
The table integrity checker was the most complex non-schema-based checker that is
needed. Therefore, there is not work of comparable complexity left to be implemen-
ted. However, in terms of quantity, there are many simple and small requirements
scattered around [WebApps] and [WebForms2] that need to be addressed using
non-schema-based checkers or alternatively, in some cases, Schematron. Making
sure that all these requirements have been identified, writing test cases for the re-
quirements and implementing checking for each requirement may well end up be-
ing more time-consuming than the development of the table integrity checker.

Identifying all these requirements calls for particular attention, as the require-
ments are scattered around the specifications and many times are only briefly men-
tioned in passing. The following were identified as unimplemented features requir-
ing non-RELAX NG checking:
• Emit a warning if the accept-charset attribute is used on a form element

that uses the XML submission format.
• Emit a warning if there is no selected radio button in a radio button group.
• Emit an error if there are more than one radio button selected in a radio button

group.
• Emit an error if a form field name starts with Ecom_ and the name is not listed

in [RFC3106].
• Emit an error if a form attribute is non-empty but does not point to a form ele-

ment by ID.
• Emit an error if a label element has more than one form control descendant or

if a label element has the for attribute and a form control as a descendant.

CHAPTER 8. FUTURE WORK 67

• Emit an error if the form submission method is get, the form is designated to
submit to an http URI, and the accept-charset attribute designates an en-
coding other than US-ASCII or UTF-8 .

• Emit an error if there are non-unique term definitions using the dfn element.
• Emit an error if there is an abbr element that has neither a title attribute nor

a corresponding dfn element.
• Emit an error if the attribute values on the meter element do not satisfy the ex-

pected inequalities.
• Emit an error if the rect coordinates on the area element do not satisfy the ex-

pected inequalities.
• Emit an error if the value of the value attribute on the progress element is

greater than the value of the max attribute.
• Emit an error if IDs are not unique.
• Support checking for rel and class attribute values in a way that updates the

registered permissible values from an external service dynamically.
Of the features listed above, the last one will likely take the most effort to
implement.

Additionally, the functionality provided by the Schematron schema could be
implemented as a non-schema-based checker that fires errors as soon as logically
possible.

A relatively complex component similar to a non-schema-based checker is
needed for showing the document outline. However, strictly speaking, such a com-
ponent would not be checking machine-checkable conformance requirements and,
therefore, is not included in the list above.

8.7 Assistance for Checking Human-Checkable
Requirements
The conformance checker is unable to check for conformance requirements that re-
quire human judgment. However, the conformance checker could make it easier for
human users to check such requirements.

For example, a machine cannot check if the document outline produced by the
HTML5 outline algorithm makes sense. However, a machine could generate the
outline and show it to the human user for review.

8.8 Web Service
To support the use of the conformance checker back end from other applications
(non-Java applications in particular), a Web service would be useful. A Web service

68 AN HTML5 CONFORMANCE CHECKER

interface following the REST architectural style [REST] could be added relatively
easily. Ideas about such an interface are presented in [WebServiceIdeas].

8.9 Embedded MathML and SVG
Browsers from the vendors involved with the WHATWG are adding (partial) sup-
port for SVG 1.1 or have already done so. The Gecko engine also supports MathML.
To support the use of these features, support for SVG and MathML in XHTML5
host documents could be added to the conformance checker.

8.10 Showing the Erroneous Source Markup
The error messages give the line and column for errors, but the output does not
show the actual erroneous part of the source markup. This makes it harder to see
where the problems are.

Future development could include a class for collecting the character-decoded
and line-identified source code. This would require changes to both the HTML and
XML parsers. The parsers would need to report the unparsed source to a data hold-
er class at the point where the byte stream has already been decoded to UTF-16 and
the line boundaries have been identified.

The data holder class could be used for extracting markup snippets correspond-
ing to each message. Also, the data could be used for formatting the entire source
markup in the conformance checker output in a way that allowed linking to the
points that contain errors.

CHAPTER 8. FUTURE WORK 69

Chapter 9

Conclusions

In this thesis the implementation of an HTML5 conformance checker was ex-
amined. A conformance checker was built around a RELAX NG validator.

9.1 Correct Expectations
My prior expectation related to the expressiveness of RELAX NG was that RELAX
NG alone would not be sufficient but would have to be augmented with Schemat-
ron and hand-crafted custom code. However, I expected RELAX NG to be more
convenient to write and change than Java code. Also, I expected that the conveni-
ence of using RELAX NG would have the cost of making error messages not as
good as than what they could be if they were hand-crafted on a case-by-case basis.

My prior expectation related to the text/html serialization of HTML5 was that
it could be treated as an alternative infoset serialization for a subset of possible
XML infosets. Therefore, XML tools would be applicable if the parser for text/
html exposed the result of the parse in a way an XML parser would expose the res-
ult of parsing an equivalent XML document.

I found, through implementation experience, that these prior expectations were
correct.

9.2 Incorrect Expectations about RELAX NG
I expected that it would make sense to use RELAX NG for expressing virtually all
HTML5 conformance requirements that could theoretically be expressed in RELAX
NG. This expectation turned out to be incorrect. I found that especially in cases of
exclusions implementation using Schematron (or custom Java code) was by far easi-
er than expressing the exclusions in the RELAX NG grammar. Moreover, express-
ing exclusions in Schematron (or custom Java code) also made it possible to give
more sensible error messages than what a RELAX NG validator would give.

For purposes of validation, when Schematron (or hand-crafted code) can be
used alongside RELAX NG, RELAX NG should be used for expressing the general

71

rules whereas Schematron should be used for expressing the exceptions to the gen-
eral rules. Trying to include the exceptions to the general rules in the RELAX NG
schema is bad both for schema maintainability and for the error messages that are
generated. That is, the full formal expressiveness of RELAX NG cannot be put to
use, because the generation of useful error messages cannot keep up.

I expected RELAX NG DTD Compatibility extension to be applicable for this pro-
ject. However, I discovered that the problems caused by the extension outweighed
its benefits. Its level of referential integrity checking is inadequate. The type of ref-
erent elements cannot be constrained. On the other hand, the restrictions RELAX
NG DTD Compatibility places on the grammar in order to avoid type ambiguity
turned out to be a significant annoyance. Schematron is much better suited for
checking referential integrity.

The decisions not to use RELAX NG for exclusion checking and referential in-
tegrity checking has reusability implications for the RELAX NG schema. Using the
RELAX NG schema alone in, for example, an editing system that only supports
RELAX NG would mean losing some exclusion and referential integrity checking
features which theoretically could be expressed in RELAX NG. Therefore, in such
cases it may be worthwhile using code generation together with the schema from
this project to produce a schema that incorporates the exclusions in RELAX NG.

9.3 Unexpected Discoveries about Schematron
I did not expect the Schematron part to end up to be limited mainly to exclusions
and referential integrity checking. Thinking of the Schematron part only as a rapid
prototype of certain kinds of non-schema-based checkers emerged relatively late in
the project.

Because Jing did not support Schematron embedded in RELAX NG, I developed
the Schematron schema as a file that is separate from the RELAX NG schema. I was
surprised to find that I felt no need for embedding Schematron assertions into
RELAX NG. On the contrary, it seems that mixing the two would have been bad for
maintainability. I conclude that embedded Schematron is overrated.

9.4 Overall Assessment
Even though I overestimated the applicability of schema languages before the pro-
ject, the overall hybrid implementation approach worked out very well. The integ-
ration of the HTML with the XML tools was a success. Therefore I consider the pro-
ject to be a success.

72 AN HTML5 CONFORMANCE CHECKER

References

[AXML]
The Annotated XML 1.0 Specification. Tim Bray, Jean Paoli and C. M. Sperberg-
McQueen, editors. O’Reilly Media, Inc., 1998.
http://www.xml.com/pub/a/axml/axmlintro.html (referenced: 2007-03-04)

[C14N]
Canonical XML Version 1.0. John Boyer. W3C, 2001.
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

[Cascading]
Cascading Style Sheets. Håkon Wium Lie. PhD thesis, University of Oslo, 2005.
http://people.opera.com/howcome/2006/phd/ (referenced: 2007-02-26)

[cdf-ws-minutes2]
W3C Workshop on Web Applications and Compound Documents (Day 2) Jun 2, 2004.
Leigh Klotz, editor. W3C, 2004.
http://www.w3.org/2004/04/webapps-cdf-ws/minutes-20040602.html
(referenced: 2006-10-18)

[Charmod]
Character Model for the World Wide Web 1.0: Fundamentals. Martin J. Dürst,
François Yergeau, Richard Ishida, Misha Wolf and Tex Texin, editors. W3C,
2005.
http://www.w3.org/TR/2005/REC-charmod-20050215/

[CharmodNorm]
Character Model for the World Wide Web 1.0: Normalization, working draft.
François Yergeau, Martin J. Dürst, Richard Ishida, Addison Phillips, Misha Wolf
and Tex Texin, editors. W3C, 2005.
http://www.w3.org/TR/2005/WD-charmod-norm-20051027/

[CollectionsAPI]
Annotated Outline of Collections Framework. Sun Microsystems, Inc..
http://java.sun.com/j2se/1.4.2/docs/guide/collections/reference.html
(referenced: 2007-03-23)

[Compact]
RELAX NG Compact Syntax. James Clark, editor. OASIS, 2002.
http://relaxng.org/compact-20021121.html (referenced: 2007-04-23)

73

http://www.xml.com/pub/a/axml/axmlintro.html
http://www.xml.com/pub/a/axml/axmlintro.html
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://people.opera.com/howcome/2006/phd/
http://people.opera.com/howcome/2006/phd/
http://www.w3.org/2004/04/webapps-cdf-ws/minutes-20040602.html
http://www.w3.org/2004/04/webapps-cdf-ws/minutes-20040602.html
http://www.w3.org/TR/2005/REC-charmod-20050215/
http://www.w3.org/TR/2005/REC-charmod-20050215/
http://www.w3.org/TR/2005/WD-charmod-norm-20051027/
http://www.w3.org/TR/2005/WD-charmod-norm-20051027/
http://java.sun.com/j2se/1.4.2/docs/guide/collections/reference.html
http://java.sun.com/j2se/1.4.2/docs/guide/collections/reference.html
http://relaxng.org/compact-20021121.html
http://relaxng.org/compact-20021121.html

[CompactXSD]
A Compact Syntax for XML Schema. Kilian Stillhard. Master’s thesis, Swiss Feder-
al Institute of Technology Zurich, 2003.
http://dret.net/netdret/docs/da-ws2002-stillhard.pdf (referenced: 2007-04-23)

[Computable]
On computable numbers, with an application to the Entscheidungsproblem. Alan M.
Turing. In Proceedings of the London Mathematical Society, series 2, volume 42,
pages 230–265. London Mathematical Society, 1937.
http://www.turingarchive.org/browse.php/B/12 (referenced: 2007-03-03)

[CSS1]
Cascading Style Sheets, level 1. Håkon Wium Lie and Bert Bos. W3C, 1996.
http://www.w3.org/TR/REC-CSS1-961217

[CSS2]
Cascading Style Sheets, level 2. Bert Bos, Håkon Wium Lie, Chris Lilley and Ian Ja-
cobs, editors. W3C, 1998.
http://www.w3.org/TR/1998/REC-CSS2-19980512/

[DatatypeAPI]
RELAX NG Datatype Interface. James Clark and Kohsuke Kawaguchi.
http://relaxng.sourceforge.net/datatype/java/apiDocs/
(referenced: 2007-04-23)

[DDML]
Document Definition Markup Language (DDML) Specification, Version 1.0. Ronald
Bourret, John Cowan, Ingo Macherius and Simon St. Laurent, editors. W3C,
1999.
http://www.w3.org/TR/1999/NOTE-ddml-19990119

[Derivative]
An algorithm for RELAX NG validation. James Clark. 2002.
http://www.thaiopensource.com/relaxng/derivative.html
(referenced: 2007-02-27)

[Dive]
Inside the RSS Validator. Mark Pilgrim. O’Reilly Media, Inc., 2003.
http://www.xml.com/pub/a/2003/02/26/dive-into-xml.html
(referenced: 2007-03-03)

[DocBook]
The DocBook Schema, working draft. Norman Walsh, editor. OASIS, 2007.
http://www.docbook.org/specs/docbook-5.0CR3-spec-wd-01.html
(referenced: 2007-05-03)

74 AN HTML5 CONFORMANCE CHECKER

http://dret.net/netdret/docs/da-ws2002-stillhard.pdf
http://dret.net/netdret/docs/da-ws2002-stillhard.pdf
http://www.turingarchive.org/browse.php/B/12
http://www.turingarchive.org/browse.php/B/12
http://www.w3.org/TR/REC-CSS1-961217
http://www.w3.org/TR/REC-CSS1-961217
http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://relaxng.sourceforge.net/datatype/java/apiDocs/
http://relaxng.sourceforge.net/datatype/java/apiDocs/
http://www.w3.org/TR/1999/NOTE-ddml-19990119
http://www.w3.org/TR/1999/NOTE-ddml-19990119
http://www.thaiopensource.com/relaxng/derivative.html
http://www.thaiopensource.com/relaxng/derivative.html
http://www.xml.com/pub/a/2003/02/26/dive-into-xml.html
http://www.xml.com/pub/a/2003/02/26/dive-into-xml.html
http://www.docbook.org/specs/docbook-5.0CR3-spec-wd-01.html
http://www.docbook.org/specs/docbook-5.0CR3-spec-wd-01.html

[DOM2]
Document Object Model (DOM) Level 2 Core Specification. Arnaud Le Hors, Phil-
ippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan Robie, Mike Champion
and Steve Byrne, editors. W3C, 2000.
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/

[DSD]
DSD: A schema language for XML. Nils Klarlund, Anders Møller and Michael I.
Schwartzbach. In FMSP ’00: Proceedings of the third workshop on Formal methods in
software practice, pages 101–111. ACM Press, 2000. ISBN: 1-58113-262-X.
http://doi.acm.org/10.1145/349360.351158

[DSD1]
Document Structure Description 1.0. Nils Klarlund, Anders Møller and Michael I.
Schwartzbach. AT&T and BRICS, 1999.
http://www.brics.dk/DSD/dsddoc.html (referenced: 2007-03-03)

[DSD2]
Document Structure Description 2.0. Anders Møller. BRICS, 2005.
http://www.brics.dk/DSD/dsd2.html (referenced: 2007-03-03)

[DTDCompat]
RELAX NG DTD Compatibility. James Clark and Makoto Murata, editors. OASIS,
2001.
http://relaxng.org/compatibility-20011203.html (referenced: 2007-04-23)

[EarlyHistory]
The Early History of HTML. Sean B. Palmer.
http://infomesh.net/html/history/early/ (referenced: 2006-10-05)

[ECMA262]
ECMA-262 3rd ed., ECMAScript Language Specification. ECMA, 1999.
http://www.ecma-international.org/publications/files/ecma-st/
ECMA-262.pdf (referenced: 2007-03-04)

[Etna]
Etna, a wysiwyg XML RELAX NG- and Gecko-based editor. Daniel Glazman and
Laurent Jouanneau. IDEAlliance Inc., 2006.
http://xtech06.usefulinc.com/schedule/paper/84 (referenced: 2007-03-04)

Proceedings of the XTech 2006 conference
[FeedValidator]

Feed Validator for Atom and RSS. Sam Ruby, Mark Pilgrim, Joseph Walton and
Phil Ringnalda.
http://feedvalidator.org/ (referenced: 2007-03-04)

[Frames]
Why Frames Suck (Most of the Time). Jakob Nielsen. 1996.
http://www.useit.com/alertbox/9612.html (referenced: 2006-10-09)

REFERENCES 75

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://doi.acm.org/10.1145/349360.351158
http://doi.acm.org/10.1145/349360.351158
http://www.brics.dk/DSD/dsddoc.html
http://www.brics.dk/DSD/dsddoc.html
http://www.brics.dk/DSD/dsd2.html
http://www.brics.dk/DSD/dsd2.html
http://relaxng.org/compatibility-20011203.html
http://relaxng.org/compatibility-20011203.html
http://infomesh.net/html/history/early/
http://infomesh.net/html/history/early/
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://xtech06.usefulinc.com/schedule/paper/84
http://xtech06.usefulinc.com/schedule/paper/84
http://feedvalidator.org/
http://feedvalidator.org/
http://www.useit.com/alertbox/9612.html
http://www.useit.com/alertbox/9612.html

[Freddy]
Can Blind Freddy see a pattern here?. Rick Jelliffe. 2005.
http://lists.xml.org/archives/xml-dev/200507/msg00057.html
(referenced: 2007-03-05)

[Generalized]
A Generalized Approach to Document Markup. Charles F. Goldfarb. In Proceedings
of the ACM SIGPLAN SIGOA symposium on Text manipulation, pages 68–73. ACM
Press, 1981. ISBN: 0-89791-050-8.
http://doi.acm.org/10.1145/800209.806456

[GNUJAXP]
The GNU JAXP Project. Free Software Foundation, Inc., 2006.
http://www.gnu.org/software/classpathx/jaxp/ (referenced: 2007-04-02)

[Handbook]
The SGML Handbook. Charles F. Goldfarb. Oxford University Press, 1991.
ISBN: 0-19-853737-9.

[Harmful]
Sending XHTML as text/html Considered Harmful. Ian Hickson.
http://www.hixie.ch/advocacy/xhtml (referenced: 2006-10-14)

Originally written in 2002; revised in 2006.
[HixieTables]

[whatwg] Table integrity and conformance. Ian Hickson. 2006.
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2006-October/
007430.html (referenced: 2007-03-26)

[HTML30]
HyperText Markup Language Specification Version 3.0, working draft. Dave Rag-
gett, editor. IETF, 1995.
http://www.w3.org/MarkUp/html3/html3.txt (referenced: 2007-04-23)

[HTML32]
HTML 3.2 Reference Specification. Dave Raggett. W3C, 1997.
http://www.w3.org/TR/REC-html32

[HTML40]
HTML 4.0 Specification. Dave Raggett, Arnaud Le Hors and Ian Jacobs, editors.
W3C, 1997.
http://www.w3.org/TR/REC-html40-971218/

[HTML401]
HTML 4.01 Specification. Dave Raggett, Arnaud Le Hors and Ian Jacobs, editors.
W3C, 1999.
http://www.w3.org/TR/1999/REC-html401-19991224/

76 AN HTML5 CONFORMANCE CHECKER

http://lists.xml.org/archives/xml-dev/200507/msg00057.html
http://lists.xml.org/archives/xml-dev/200507/msg00057.html
http://doi.acm.org/10.1145/800209.806456
http://doi.acm.org/10.1145/800209.806456
http://www.gnu.org/software/classpathx/jaxp/
http://www.gnu.org/software/classpathx/jaxp/
http://www.hixie.ch/advocacy/xhtml
http://www.hixie.ch/advocacy/xhtml
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2006-October/007430.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2006-October/007430.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2006-October/007430.html
http://www.w3.org/MarkUp/html3/html3.txt
http://www.w3.org/MarkUp/html3/html3.txt
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/REC-html40-971218/
http://www.w3.org/TR/REC-html40-971218/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1999/REC-html401-19991224/

[HTML40rev]
HTML 4.0 Specification. Dave Raggett, Arnaud Le Hors and Ian Jacobs, editors.
W3C, 1998.
http://www.w3.org/TR/1998/REC-html40-19980424/

Revised without incrementing the version number.
[HTML5Datatypes]

RELAX NG Datatype Library for HTML5 Datatypes, working draft. Henri Sivonen.
2006.
http://hsivonen.iki.fi/html5-datatypes/2006-04-27 (referenced: 2007-03-04)

[HTML5RNG]
RELAX NG Schema for (X)HTML 5. Elika Etemad and Henri Sivonen. 2007.
http://syntax.whattf.org/ (referenced: 2007-02-27)

[HTMLplus]
HTML+ (Hypertext markup format), working draft. Dave Raggett. 1993.
http://www.w3.org/MarkUp/HTMLPlus/htmlplus_1.html
(referenced: 2007-04-23)

[ICU4J]
International Components for Unicode.
http://www.icu-project.org/ (referenced: 2007-04-02)

[IEcompat]
[whatwg] Questions: IE 6 Compatibility, HTML 5, Spec Timeframe, and Implementa-
tion Timeframe. Ian Hickson. 2005.
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2005-April/
003818.html (referenced: 2007-03-23)

[IIIR-HTML]
Hypertext Markup Language (HTML), working draft. Tim Berners-Lee and Daniel
Connolly, editors. IETF, 1993.
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt

[Infoset]
XML Information Set (Second Edition). John Cowan and Richard Tobin, editors.
W3C, 2004.
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/

[IntroXML]
An Introduction to XML and Web Technologies. Anders Møller and Michael I.
Schwartzbach. Addison-Wesley, 2006. ISBN: 0321269667.
http://www.brics.dk/ixwt/ (referenced: 2007-04-23)

[ISO10646]
ISO/IEC 10646:2003(E), Information technology – Universal Multiple-Octet Coded
Character Set (UCS). ISO, 2003.
http://standards.iso.org/ittf/PubliclyAvailableStandards/
c039921_ISO_IEC_10646_2003(E).zip

REFERENCES 77

http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/1998/REC-html40-19980424/
http://hsivonen.iki.fi/html5-datatypes/2006-04-27
http://hsivonen.iki.fi/html5-datatypes/2006-04-27
http://syntax.whattf.org/
http://syntax.whattf.org/
http://www.w3.org/MarkUp/HTMLPlus/htmlplus_1.html
http://www.w3.org/MarkUp/HTMLPlus/htmlplus_1.html
http://www.icu-project.org/
http://www.icu-project.org/
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2005-April/003818.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2005-April/003818.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2005-April/003818.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2005-April/003818.html
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.brics.dk/ixwt/
http://www.brics.dk/ixwt/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921_ISO_IEC_10646_2003(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921_ISO_IEC_10646_2003(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921_ISO_IEC_10646_2003(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921_ISO_IEC_10646_2003(E).zip

[ISO15445]
ISO/IEC 15445:2000(E), Information technology – Document description and pro-
cessing languages – HyperText Markup Language (HTML). ISO, 2000.
http://purl.org/NET/ISO+IEC.15445/15445.html (referenced: 2007-04-23)

URL reference to version corrected in 2003.
[ISO15445TC1]

ISO/IEC 15445:2000(E) TC1, Information technology – Document description and
processing languages – HyperText Markup Language (HTML), Technical Corrigendum
1. ISO, 2002.
http://purl.org/NET/ISO+IEC.15445/TC1.html (referenced: 2007-04-23)

[ISO19757-2]
ISO/IEC 19757-2:2003(E), Information technology – Document Schema Definition
Language (DSDL) – Part 2: Regular-grammar-based validation – RELAX NG. ISO,
2003.
http://standards.iso.org/ittf/PubliclyAvailableStandards/
c037605_ISO_IEC_19757-2_2003(E).zip

[ISO19757-2Amd1]
ISO/IEC 19757-2:2003/Amd 1:2006(E), Information technology – Document Schema
Definition Language (DSDL) – Part 2: Regular-grammar-based validation – RELAX
NG – Amendment 1: Compact Syntax. ISO, 2006.
http://standards.iso.org/ittf/PubliclyAvailableStandards/
c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip

[ISO19757-3]
ISO/IEC 19757-3:2006(E), Information technology – Document Schema Definition
Language (DSDL) – Part 3: Rule-based validation – Schematron. ISO, 2006.
http://standards.iso.org/ittf/PubliclyAvailableStandards/
c040833_ISO_IEC_19757-3_2006(E).zip

[ISO8879]
ISO 8879:1986, Information processing – Text and office systems – Standard General-
ized Markup Language (SGML). ISO, 1986. Published in [Handbook].

[ISO8879TC2]
ISO 8879 TC2. Charles F. Goldfarb, editor. 1997.
http://www1.y12.doe.gov/capabilities/sgml/wg8/document/1955.htm
(referenced: 2007-03-03)

[JavaScript]
Core JavaScript 1.5 Reference. Mozilla Foundation, 2007.
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
(referenced: 2007-04-02)

78 AN HTML5 CONFORMANCE CHECKER

http://purl.org/NET/ISO+IEC.15445/15445.html
http://purl.org/NET/ISO+IEC.15445/15445.html
http://purl.org/NET/ISO+IEC.15445/15445.html
http://purl.org/NET/ISO+IEC.15445/TC1.html
http://purl.org/NET/ISO+IEC.15445/TC1.html
http://purl.org/NET/ISO+IEC.15445/TC1.html
http://purl.org/NET/ISO+IEC.15445/TC1.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/c037605_ISO_IEC_19757-2_2003(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c037605_ISO_IEC_19757-2_2003(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c037605_ISO_IEC_19757-2_2003(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c037605_ISO_IEC_19757-2_2003(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://www1.y12.doe.gov/capabilities/sgml/wg8/document/1955.htm
http://www1.y12.doe.gov/capabilities/sgml/wg8/document/1955.htm
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference

[javascriptURI]
The ‘javascript’ resource identifier scheme, working draft. Björn Höhrmann. IETF,
2006.
http://ietfreport.isoc.org/all-ids/draft-hoehrmann-javascript-scheme-00.txt
(referenced: 2007-03-01)

[Jena]
Jena – A Semantic Web Framework for Java.
http://jena.sourceforge.net/ (referenced: 2007-04-02)

[Jing]
Jing – A RELAX NG validator in Java. James Clark. Thai Open Source Software
Center Ltd, 2003.
http://www.thaiopensource.com/relaxng/jing.html (referenced: 2007-03-23)

[JointPosition]
Position Paper for the W3C Workshop on Web Applications and Compound Docu-
ments. The Mozilla Foundation and Opera Software, 2004.
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
(referenced: 2006-10-16)

[Kosek]
Private communication with Jirka Kosek. 2007.

[LangTagRegistry]
Language Subtag Registry. The Internet Corporation for Assigned Names and
Numbers, 2007.
http://www.iana.org/assignments/language-subtag-registry
(referenced: 2007-04-02)

[libxml2]
The XML C parser and toolkit of Gnome. Daniel Veillard.
http://xmlsoft.org/ (referenced: 2007-04-02)

[M12N]
Modularization of XHTML™. Murray Altheim, Frank Boumphrey, Sam Dooley,
Shane McCarron, Sebastian Schnitzenbaumer and Ted Wugofski, editors. W3C,
2001.
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/

[M12N-RNG]
Modularization of XHTML in RELAX NG. James Clark. Thai Open Source Soft-
ware Center Ltd, 2003.
http://www.thaiopensource.com/relaxng/xhtml/ (referenced: 2007-04-23)

[M12N11]
XHTML™ Modularization 1.1. Murray Altheim, Frank Boumphrey, Sam Dooley,
Shane McCarron, Sebastian Schnitzenbaumer, Ted Wugofski, Daniel Austin,
Subramanian Peruvemba and Masayasu Ishikawa, editors. W3C, 2006.
http://www.w3.org/TR/2006/PR-xhtml-modularization-20060213/

REFERENCES 79

http://ietfreport.isoc.org/all-ids/draft-hoehrmann-javascript-scheme-00.txt
http://ietfreport.isoc.org/all-ids/draft-hoehrmann-javascript-scheme-00.txt
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://www.thaiopensource.com/relaxng/jing.html
http://www.thaiopensource.com/relaxng/jing.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry
http://xmlsoft.org/
http://xmlsoft.org/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.thaiopensource.com/relaxng/xhtml/
http://www.thaiopensource.com/relaxng/xhtml/
http://www.w3.org/TR/2006/PR-xhtml-modularization-20060213/
http://www.w3.org/TR/2006/PR-xhtml-modularization-20060213/

[M12N11WD]
XHTML™ Modularization 1.1, working draft. Daniel Austin, Subramanian Per-
uvemba, Shane McCarron, Masayasu Ishikawa, Mark Birbeck, Murray Altheim,
Frank Boumphrey, Sam Dooley, Sebastian Schnitzenbaumer and Ted Wugofski,
editors. W3C, 2006.
http://www.w3.org/TR/2006/WD-xhtml-modularization-20060705/

[MathML]
Mathematical Markup Language (MathML) Version 2.0 (Second Edition). David Carl-
isle, Patrick Ion, Robert Miner and Nico Poppelier, editors. W3C, 2003.
http://www.w3.org/TR/2003/REC-MathML2-20031021/

[Microformats]
Microformats: a pragmatic path to the semantic web. Rohit Khare and Tantek Çelik.
In WWW ’06: Proceedings of the 15th international conference on World Wide Web,
pages 865–866. ACM Press, 2006. ISBN: 1-59593-323-9.
http://doi.acm.org/10.1145/1135777.1135917

[mod_validator]
mod_validator. Web Thing.
http://apache.webthing.com/mod_validator/ (referenced: 2007-01-30)

[MozFAQ]
Mozilla Web Author FAQ. Henri Sivonen. 2005.
http://www.mozilla.org/docs/web-developer/faq.html
(referenced: 2006-10-18)

[MS-WebApps]
Paper for participation in the W3C Workshop on Web Applications and Compound
Documents. Alex Hopmann and Michael Wallent. Microsoft, 2004.
http://www.w3.org/2004/04/webapps-cdf-ws/papers/microsoft.html
(referenced: 2006-10-16)

[MSV]
Sun Multi-Schema Validator. Kohsuke Kawaguchi.
https://msv.dev.java.net/ (referenced: 2007-04-02)

[NetBeansProfiler]
The NetBeans Profiler Project.
http://profiler.netbeans.org/ (referenced: 2007-04-02)

[NewMember]
[whatwg] New WHATWG member. Ian Hickson. 2004.
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2004-June/
000491.html (referenced: 2007-03-23)

[NIO]
New I/O APIs. Sun Microsystems, Inc., 2002.
http://java.sun.com/j2se/1.4.2/docs/guide/nio/ (referenced: 2007-04-02)

80 AN HTML5 CONFORMANCE CHECKER

http://www.w3.org/TR/2006/WD-xhtml-modularization-20060705/
http://www.w3.org/TR/2006/WD-xhtml-modularization-20060705/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://doi.acm.org/10.1145/1135777.1135917
http://doi.acm.org/10.1145/1135777.1135917
http://apache.webthing.com/mod_validator/
http://apache.webthing.com/mod_validator/
http://www.mozilla.org/docs/web-developer/faq.html
http://www.mozilla.org/docs/web-developer/faq.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/microsoft.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/microsoft.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/microsoft.html
https://msv.dev.java.net/
https://msv.dev.java.net/
http://profiler.netbeans.org/
http://profiler.netbeans.org/
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2004-June/000491.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2004-June/000491.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2004-June/000491.html
http://java.sun.com/j2se/1.4.2/docs/guide/nio/
http://java.sun.com/j2se/1.4.2/docs/guide/nio/

[nxml-mode]
nXML mode. James Clark. Thai Open Source Software Center Ltd, 2004.
http://www.thaiopensource.com/nxml-mode/ (referenced: 2007-03-23)

[OneStat]
Microsoft’s Internet Explorer global usage share is 85.81 percent according to OneStat.-
com. OneStat.com, 2007.
http://www.onestat.com/html/
aboutus_pressbox50-microsoft-internet-explorer-7-usage.html
(referenced: 2007-03-22)

[OpenSP]
OpenJade Distribution Page.
http://openjade.sourceforge.net/ (referenced: 2007-04-02)

[Opera9]
Web Specifications Supported in Opera 9. Opera Software ASA.
http://www.opera.com/docs/specs/opera9/ (referenced: 2007-03-03)

[oXygen]
<oXygen/> XML Editor & XSLT Debugger. SyncRO Soft Ltd, 2007.
http://oxygenxml.com/ (referenced: 2007-03-23)

[ProducingXML]
HOWTO Avoid Being Called a Bozo When Producing XML. Henri Sivonen. 2005.
http://hsivonen.iki.fi/producing-xml/ (referenced: 2007-02-22)

[Raggett]
Raggett on HTML 4. Dave Raggett, Jenny Lam, Ian Alexander and Michael
Kmiec. Addison Wesley Longman, 1998. ISBN: 0-201-17805-2.
http://www.w3.org/People/Raggett/book4/ch02.html
(referenced: 2007-04-23)

[RELAX]
RELAX (Regular Language description for XML). Makoto Murata. 2002.
http://www.xml.gr.jp/relax/ (referenced: 2007-03-03)

[Relaxed]
Relaxed: on the way towards true validation of compound documents. Jirka Kosek and
Petr Nálevka. In WWW ’06: Proceedings of the 15th international conference on
World Wide Web, pages 427–436. ACM Press, 2006. ISBN: 1-59593-323-9.
http://doi.acm.org/10.1145/1135777.1135841

[RelaxedAnn]
Relaxed - new HTML validation service based on RELAX NG + Schematron. Jirka
Kosek. 2005.
http://lists.xml.org/archives/xml-dev/200507/msg00241.html
(referenced: 2007-03-11)

REFERENCES 81

http://www.thaiopensource.com/nxml-mode/
http://www.thaiopensource.com/nxml-mode/
http://www.onestat.com/html/aboutus_pressbox50-microsoft-internet-explorer-7-usage.html
http://www.onestat.com/html/aboutus_pressbox50-microsoft-internet-explorer-7-usage.html
http://www.onestat.com/html/aboutus_pressbox50-microsoft-internet-explorer-7-usage.html
http://www.onestat.com/html/aboutus_pressbox50-microsoft-internet-explorer-7-usage.html
http://openjade.sourceforge.net/
http://openjade.sourceforge.net/
http://www.opera.com/docs/specs/opera9/
http://www.opera.com/docs/specs/opera9/
http://oxygenxml.com/
http://oxygenxml.com/
http://hsivonen.iki.fi/producing-xml/
http://hsivonen.iki.fi/producing-xml/
http://www.w3.org/People/Raggett/book4/ch02.html
http://www.w3.org/People/Raggett/book4/ch02.html
http://www.xml.gr.jp/relax/
http://www.xml.gr.jp/relax/
http://doi.acm.org/10.1145/1135777.1135841
http://doi.acm.org/10.1145/1135777.1135841
http://lists.xml.org/archives/xml-dev/200507/msg00241.html
http://lists.xml.org/archives/xml-dev/200507/msg00241.html

[RelaxedDocBook]
“RELAXED” DocBook Validator. Petr Nálevka and Jirka Kosek.
http://relaxed.vse.cz/docbookvalidator/ (referenced: 2007-03-04)

[RelaxedValidator]
“RELAXED” the HTML validator. Petr Nálevka.
http://relaxed.vse.cz/ (referenced: 2007-03-04)

[Relaxtron]
Combining RELAX NG and Schematron. Eddie Robertsson. O’Reilly Media, Inc.,
2004.
http://www.xml.com/pub/a/2004/02/11/relaxtron.html
(referenced: 2007-04-23)

[REST]
Architectural Styles and the Design of Network-based Software Architectures. Roy
Thomas Fielding. PhD thesis, University of California, Irvine, 2000.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
(referenced: 2007-02-28)

[RFC1738]
RFC 1738, Uniform Resource Locators (URL). Tim Berners-Lee, Larry Masinter and
Mark McCahill, editors. IETF, 1994.
http://ietf.org/rfc/rfc1738

[RFC1866]
RFC 1866, Hypertext Markup Language - 2.0. Tim Berners-Lee and Dan Connolly,
editors. IETF, 1995.
http://ietf.org/rfc/rfc1866

[RFC1942]
RFC 1942, HTML Tables. Dave Raggett. IETF, 1996.
http://ietf.org/rfc/rfc1942

[RFC2070]
RFC 2070, Internationalization of the Hypertext Markup Language. François
Yergeau, Gavin Thomas Nicol, Glenn Adams and Martin J. Dürst. IETF, 1997.
http://ietf.org/rfc/rfc2070

[RFC2368]
RFC 2368, The mailto URL scheme. Paul E. Hoffman, Larry Masinter and Jamie
Zawinski. IETF, 1998.
http://ietf.org/rfc/rfc2368

[RFC2397]
RFC 2397, The “data” URL scheme. Larry Masinter. IETF, 1998.
http://ietf.org/rfc/rfc2397

82 AN HTML5 CONFORMANCE CHECKER

http://relaxed.vse.cz/docbookvalidator/
http://relaxed.vse.cz/docbookvalidator/
http://relaxed.vse.cz/
http://relaxed.vse.cz/
http://www.xml.com/pub/a/2004/02/11/relaxtron.html
http://www.xml.com/pub/a/2004/02/11/relaxtron.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://ietf.org/rfc/rfc1738
http://ietf.org/rfc/rfc1738
http://ietf.org/rfc/rfc1866
http://ietf.org/rfc/rfc1866
http://ietf.org/rfc/rfc1942
http://ietf.org/rfc/rfc1942
http://ietf.org/rfc/rfc2070
http://ietf.org/rfc/rfc2070
http://ietf.org/rfc/rfc2368
http://ietf.org/rfc/rfc2368
http://ietf.org/rfc/rfc2397
http://ietf.org/rfc/rfc2397

[RFC2616]
RFC 2616, Hypertext Transfer Protocol – HTTP/1.1. Roy T. Fielding, James Gettys,
Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Masinter, Paul J. Leach and Tim
Berners-Lee. IETF, 1999.
http://ietf.org/rfc/rfc2616

[RFC2818]
RFC 2818, HTTP Over TLS. Eric Rescorla. IETF, 2000.
http://ietf.org/rfc/rfc2818

[RFC2854]
RFC 2854, The ‘text/html’ Media Type. Daniel W. Connolly and Larry Masinter.
IETF, 2000.
http://www.ietf.org/rfc/rfc2854

[RFC3066]
RFC 3066, Tags for the Identification of Languages. Harald Tveit Alvestrand. IETF,
2001.
http://ietf.org/rfc/rfc3066

[RFC3106]
RFC 3106, ECML v1.1: Field Specifications for E-Commerce. Donald E. Eastlake and
Ted Goldstein. IETF, 2001.
http://www.ietf.org/rfc/rfc3106

[RFC3236]
RFC 3236, The ‘application/xhtml+xml’ Media Type. Mark A. Baker and Peter Stark.
IETF, 2002.
http://www.ietf.org/rfc/rfc3236

[RFC3987]
RFC 3987, Internationalized Resource Identifiers (IRIs). Martin Dürst and Michel
Suignard. IETF, 2005.
http://www.ietf.org/rfc/rfc3987

[RFC4287]
RFC 4287, The Atom Syndication Format. Mark Nottingham and Robert Sayre, ed-
itors. IETF, 2005.
http://ietf.org/rfc/rfc4287

[RFC4646]
RFC 4646, Tags for Identifying Languages. Addison Phillips and Mark Davis, edit-
ors. IETF, 2006.
http://ietf.org/rfc/rfc4646

[RFC4647]
RFC 4647, Matching of Language Tags. Addison Phillips and Mark Davis, editors.
IETF, 2006.
http://ietf.org/rfc/rfc4647

REFERENCES 83

http://ietf.org/rfc/rfc2616
http://ietf.org/rfc/rfc2616
http://ietf.org/rfc/rfc2818
http://ietf.org/rfc/rfc2818
http://www.ietf.org/rfc/rfc2854
http://www.ietf.org/rfc/rfc2854
http://ietf.org/rfc/rfc3066
http://ietf.org/rfc/rfc3066
http://www.ietf.org/rfc/rfc3106
http://www.ietf.org/rfc/rfc3106
http://www.ietf.org/rfc/rfc3236
http://www.ietf.org/rfc/rfc3236
http://www.ietf.org/rfc/rfc3987
http://www.ietf.org/rfc/rfc3987
http://ietf.org/rfc/rfc4287
http://ietf.org/rfc/rfc4287
http://ietf.org/rfc/rfc4646
http://ietf.org/rfc/rfc4646
http://ietf.org/rfc/rfc4647
http://ietf.org/rfc/rfc4647

[Rhino]
Rhino: JavaScript for Java. Norris Boyd, editor. Mozilla Foundation, 2007.
http://www.mozilla.org/rhino/ (referenced: 2007-03-26)

[RNCtutorial]
RELAX NG Compact Syntax Tutorial, working draft. James Clark, John Cowan
and Makoto Murata, editors. OASIS, 2003.
http://relaxng.org/compact-tutorial-20030326.html (referenced: 2007-03-04)

[RNG]
RELAX NG Specification. James Clark and Makoto Murata, editors. OASIS, 2001.
http://relaxng.org/spec-20011203.html (referenced: 2007-03-03)

[RNG-XSD]
Guidelines for using W3C XML Schema Datatypes with RELAX NG. James Clark
and Kohsuke Kawaguchi, editors. OASIS, 2001.
http://relaxng.org/xsd-20010907.html (referenced: 2007-04-23)

[RNGdesign]
The Design of RELAX NG. James Clark.
http://www.thaiopensource.com/relaxng/design.html (referenced: 2007-04-23)

[Ruby]
Ruby Annotation. Marcin Sawicki, Michel Suignard, Masayasu Ishikawa, Martin
Dürst and Tex Texin, editors. W3C, 2001.
http://www.w3.org/TR/2001/REC-ruby-20010531/

[RubyIE]
RUBY Element | ruby Object. Microsoft Corporation.
http://msdn.microsoft.com/workshop/author/dhtml/reference/objects/
ruby.asp (referenced: 2007-04-25)

[SAX]
SAX. David Megginson and David Brownell.
http://www.saxproject.org/ (referenced: 2007-03-03)

[SAX2]
SAX2. David Brownell. O’Reilly, 2002. ISBN: 0-596-00237-8.
http://safari.oreilly.com/0596002378

[SaxCompiler]
SaxCompiler. Henri Sivonen. 2005.
http://hsivonen.iki.fi/saxcompiler/ (referenced: 2007-02-22)

[SAXON]
About SAXON. Michael H. Kay. Saxonica Limited, 2005.
http://saxon.sourceforge.net/saxon6.5.5/ (referenced: 2007-04-02)

84 AN HTML5 CONFORMANCE CHECKER

http://www.mozilla.org/rhino/
http://www.mozilla.org/rhino/
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/spec-20011203.html
http://relaxng.org/spec-20011203.html
http://relaxng.org/xsd-20010907.html
http://relaxng.org/xsd-20010907.html
http://www.thaiopensource.com/relaxng/design.html
http://www.thaiopensource.com/relaxng/design.html
http://www.w3.org/TR/2001/REC-ruby-20010531/
http://www.w3.org/TR/2001/REC-ruby-20010531/
http://msdn.microsoft.com/workshop/author/dhtml/reference/objects/ruby.asp
http://msdn.microsoft.com/workshop/author/dhtml/reference/objects/ruby.asp
http://msdn.microsoft.com/workshop/author/dhtml/reference/objects/ruby.asp
http://www.saxproject.org/
http://www.saxproject.org/
http://safari.oreilly.com/0596002378
http://safari.oreilly.com/0596002378
http://hsivonen.iki.fi/saxcompiler/
http://hsivonen.iki.fi/saxcompiler/
http://saxon.sourceforge.net/saxon6.5.5/
http://saxon.sourceforge.net/saxon6.5.5/

[Schematron15]
The Schematron Assertion Language 1.5. Rick Jelliffe. Academia Sinica Computing
Centre, 2002.
http://xml.ascc.net/resource/schematron/Schematron2000.html
(referenced: 2007-04-23)

[SchematronHeuristic]
Optimizing Time-Performance of Streaming Schematon. Rick Jelliffe. 2002.
http://www.topologi.com/resources/pdfs/SchematronHeuristic.pdf
(referenced: 2007-03-02)

[SchematronOld]
The Schematron – An XML Structure Validation Language using Patterns in Trees.
Rick Jelliffe. Academia Sinica Computing Centre, 2001.
http://xml.ascc.net/resource/schematron/old-index.html
(referenced: 2006-09-25)

[SchemaUE]
W3C Workshop on XML Schema 1.0 User Experiences and Interoperability. W3C,
2005.
http://www.w3.org/2005/03/xml-schema-user-program.html
(referenced: 2007-04-23)

[Schneegans]
XML Schema Validator. Christoph Schneegans.
http://schneegans.de/sv/ (referenced: 2007-03-04)

[Several]
Re: [whatwg] several messages about HTML5. Ian Hickson. 2007.
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2007-February/
009517.html (referenced: 2007-02-27)

[Sniffing]
Re: Sniffing XHTML sent as text/html. Steven Pemberton. 2000.
http://lists.w3.org/Archives/Public/www-html/2000Sep/0024.html
(referenced: 2007-03-01)

[SoupDOM]
Tag Soup: How UAs handle <x> <y> </x> </y>. Ian Hickson. 2002.
http://ln.hixie.ch/?start=1037910467&count=1 (referenced: 2007-03-23)

[SP]
SP. James Clark.
http://www.jclark.com/sp/ (referenced: 2007-04-02)

[Stats]
Web Authoring Statistics. Google, 2005.
http://code.google.com/webstats/ (referenced: 2007-02-26)

REFERENCES 85

http://xml.ascc.net/resource/schematron/Schematron2000.html
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://www.topologi.com/resources/pdfs/SchematronHeuristic.pdf
http://www.topologi.com/resources/pdfs/SchematronHeuristic.pdf
http://xml.ascc.net/resource/schematron/old-index.html
http://xml.ascc.net/resource/schematron/old-index.html
http://www.w3.org/2005/03/xml-schema-user-program.html
http://www.w3.org/2005/03/xml-schema-user-program.html
http://schneegans.de/sv/
http://schneegans.de/sv/
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2007-February/009517.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2007-February/009517.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2007-February/009517.html
http://lists.w3.org/Archives/Public/www-html/2000Sep/0024.html
http://lists.w3.org/Archives/Public/www-html/2000Sep/0024.html
http://ln.hixie.ch/?start=1037910467&count=1
http://ln.hixie.ch/?start=1037910467&count=1
http://www.jclark.com/sp/
http://www.jclark.com/sp/
http://code.google.com/webstats/
http://code.google.com/webstats/

[SVG]
Scalable Vector Graphics (SVG) 1.1 Specification. Jon Ferraiolo, Jun Fujisawa and
Dean Jackson, editors. W3C, 2003.
http://www.w3.org/TR/2003/REC-SVG11-20030114/

[TableCell]
nsHTMLTableCellElement.cpp. Mozilla Foundation, 2006.
http://mxr.mozilla.org/seamonkey/source/content/html/content/src/
nsHTMLTableCellElement.cpp (referenced: 2007-04-02)

[TagSoup]
TagSoup: A SAX parser in Java for nasty, ugly HTML. John Cowan. 2004.
http://home.ccil.org/~cowan/XML/tagsoup/tagsoup.pdf
(referenced: 2007-03-03)

Presented at Extreme Markup Languages 2004.
[Taxonomy]

Taxonomy of XML schema languages using formal language theory. Makoto Murata,
Dongwon Lee, Murali Mani and Kohsuke Kawaguchi. In ACM Trans. Inter.
Tech., volume 5, number 4, pages 660–704. ACM Press, 2005. ISSN: 1533-5399.
http://doi.acm.org/10.1145/1111627.1111631

[TheCounter]
Browser Stats. Jupitermedia Corporation, 2007.
http://www.thecounter.com/stats/2007/February/browser.php
(referenced: 2007-03-22)

[ToBeDeleted]
<draft-ietf-iiir-html-01.txt, .ps> to be deleted.. W. Eliot Kimber. 1994.
http://1997.webhistory.org/www.lists/www-talk.1994q1/0573.html
(referenced: 2007-04-23)

[TREX]
TREX – Tree Regular Expressions for XML. James Clark.
http://www.thaiopensource.com/trex/ (referenced: 2007-03-03)

[UAX15]
Unicode Normalization Forms. Mark Davis and Martin Dürst. Unicode, Inc., 2006.
http://www.unicode.org/reports/tr15/tr15-27.html (referenced: 2007-03-03)

[Understanding]
Understanding HTML, XML and XHTML. Maciej Stachowiak. 2006.
http://webkit.org/blog/?p=68 (referenced: 2006-10-14)

The surname of the author isn’t mentioned in the article itself.
[Unicode]

The Unicode Standard, Version 5.0. The Unicode Consortium. Addison-Wesley,
2006. ISBN: 0-321-48091-0.
http://www.unicode.org/versions/Unicode5.0.0/ (referenced: 2007-03-03)

Version 5.0 not yet online at the time of the publication of this thesis.

86 AN HTML5 CONFORMANCE CHECKER

http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://mxr.mozilla.org/seamonkey/source/content/html/content/src/nsHTMLTableCellElement.cpp
http://mxr.mozilla.org/seamonkey/source/content/html/content/src/nsHTMLTableCellElement.cpp
http://mxr.mozilla.org/seamonkey/source/content/html/content/src/nsHTMLTableCellElement.cpp
http://home.ccil.org/~cowan/XML/tagsoup/tagsoup.pdf
http://home.ccil.org/~cowan/XML/tagsoup/tagsoup.pdf
http://doi.acm.org/10.1145/1111627.1111631
http://doi.acm.org/10.1145/1111627.1111631
http://www.thecounter.com/stats/2007/February/browser.php
http://www.thecounter.com/stats/2007/February/browser.php
http://1997.webhistory.org/www.lists/www-talk.1994q1/0573.html
http://1997.webhistory.org/www.lists/www-talk.1994q1/0573.html
http://www.thaiopensource.com/trex/
http://www.thaiopensource.com/trex/
http://www.unicode.org/reports/tr15/tr15-27.html
http://www.unicode.org/reports/tr15/tr15-27.html
http://webkit.org/blog/?p=68
http://webkit.org/blog/?p=68
http://www.unicode.org/versions/Unicode5.0.0/
http://www.unicode.org/versions/Unicode5.0.0/

[Valet]
Page Valet. WebThing Ltd.
http://valet.webthing.com/page/ (referenced: 2007-04-02)

[ValetMode]
Parse Modes - Page Valet Help. Web Thing.
http://valet.webthing.com/page/parsemode.html (referenced: 2007-01-30)

[Validace]
Doplňková validace HTML a XHTML dokumentů. Petr Nálevka. Bachelor’s thesis,
University of Economics, Prague, 2005.
http://relaxed.sourceforge.net/thesis_cz.html (referenced: 2007-04-23)

[ValidatorAbout]
About the Validation Service. Henri Sivonen. 2007.
http://hsivonen.iki.fi/validator-about/ (referenced: 2007-02-27)

[ValidatorAbout2007]
About the Validation Service. Henri Sivonen. 2007.
http://hsivonen.iki.fi/validator-about/2007-05-07 (referenced: 2007-05-07)

[Validome]
Validome HTML / XHTML / WML / XML Validator.
http://www.validome.org/ (referenced: 2007-03-04)

[ValidomeStaff]
Private communication with Validome Staff. 2006.

[W3C-DTF]
Date and Time Formats. Misha Wolf and Charles Wicksteed. W3C, 1998.
http://www.w3.org/TR/1998/NOTE-datetime-19980827

[W3Cvalidator]
The W3C Markup Validation Service v0.7.4. W3C.
http://validator.w3.org/ (referenced: 2007-01-24)

[WaterlooGML]
Waterloo SCRIPT GML User’s Guide. University of Waterloo, 1988.
http://www.uga.edu/~ucns/stddocs/script-gmlref-tso.txt
(referenced: 2007-04-23)

[WCAG]
Web Content Accessibility Guidelines 1.0. Wendy Chisholm, Gregg Vanderheiden
and Ian Jacobs, editors. W3C, 1999.
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/

[WDG]
WDG HTML Validator. Liam Quinn.
http://www.htmlhelp.com/tools/validator/ (referenced: 2007-01-25)

REFERENCES 87

http://valet.webthing.com/page/
http://valet.webthing.com/page/
http://valet.webthing.com/page/parsemode.html
http://valet.webthing.com/page/parsemode.html
http://relaxed.sourceforge.net/thesis_cz.html
http://relaxed.sourceforge.net/thesis_cz.html
http://hsivonen.iki.fi/validator-about/
http://hsivonen.iki.fi/validator-about/
http://hsivonen.iki.fi/validator-about/2007-05-07
http://hsivonen.iki.fi/validator-about/2007-05-07
http://www.validome.org/
http://www.validome.org/
http://www.w3.org/TR/1998/NOTE-datetime-19980827
http://www.w3.org/TR/1998/NOTE-datetime-19980827
http://validator.w3.org/
http://validator.w3.org/
http://www.uga.edu/~ucns/stddocs/script-gmlref-tso.txt
http://www.uga.edu/~ucns/stddocs/script-gmlref-tso.txt
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
http://www.htmlhelp.com/tools/validator/
http://www.htmlhelp.com/tools/validator/

[WDG1998]
What Makes the WDG HTML Validator Special. Liam Quinn. 1998.
http://web.archive.org/web/19990128203022/htmlhelp.com/tools/validator/
differences.html (referenced: 2007-04-23)

[WDG2007]
How the WDG HTML Validator differs from others. Liam Quinn.
http://www.htmlhelp.com/tools/validator/differences.html.en
(referenced: 2007-01-25)

[Weaving]
Weaving the Web. Tim Berners-Lee. HarperBusiness, 2000. ISBN: 0-06-251587-X.

[WebApps]
Web Applications 1.0, working draft. Ian Hickson, editor. WHATWG, 2006.
http://whatwg.org/specs/web-apps/current-work/

I used three primary snapshots of the specification draft in this project. I took
the first snapshot at the start of the thesis project. The snapshot was dated
February 24 2006. I took the second snapshot in November 2006. The snapshot
was dated November 1 2006. In March 2007, I took a third snapshot. It was
dated March 9 2007.

[WebForms2]
Web Forms 2.0, working draft. Ian Hickson, editor. WHATWG, 2006.
http://whatwg.org/specs/web-forms/current-work/

I used two primary snapshots of the specification draft in this project. I took
the first snapshot at the start of the thesis project. The snapshot was dated Janu-
ary 10 2006. I took the second snapshot was taken in November 2006. The snap-
shot was dated October 12 2006. In March 2007, a third snapshot was not neces-
sary, because the specification had not changed.

[WebServiceIdeas]
Validator Web Service Interface Ideas. Henri Sivonen. 2006.
http://hsivonen.iki.fi/validator-ws-ideas/ (referenced: 2007-03-23)

[WHAT-Ann]
WHAT open mailing list announcement. Ian Hickson. WHATWG, 2004.
http://whatwg.org/news/start (referenced: 2006-10-18)

[WHAT-Charter]
Web Hypertext Application Technology Working Group Charter. WHATWG.
http://whatwg.org/charter (referenced: 2006-10-19)

[Wilson]
Jon Udell: Chris Wilson on IE7, Ajax, and web standards. Jon Udell and Chris
Wilson. Microsoft, 2007.
http://channel9.msdn.com/podcasts/MSConversations_wilson_ch9.mp3
(referenced: 2007-02-26)

88 AN HTML5 CONFORMANCE CHECKER

http://web.archive.org/web/19990128203022/htmlhelp.com/tools/validator/differences.html
http://web.archive.org/web/19990128203022/htmlhelp.com/tools/validator/differences.html
http://web.archive.org/web/19990128203022/htmlhelp.com/tools/validator/differences.html
http://www.htmlhelp.com/tools/validator/differences.html.en
http://www.htmlhelp.com/tools/validator/differences.html.en
http://whatwg.org/specs/web-apps/current-work/
http://whatwg.org/specs/web-apps/current-work/
http://whatwg.org/specs/web-forms/current-work/
http://whatwg.org/specs/web-forms/current-work/
http://hsivonen.iki.fi/validator-ws-ideas/
http://hsivonen.iki.fi/validator-ws-ideas/
http://whatwg.org/news/start
http://whatwg.org/news/start
http://whatwg.org/charter
http://whatwg.org/charter
http://channel9.msdn.com/podcasts/MSConversations_wilson_ch9.mp3
http://channel9.msdn.com/podcasts/MSConversations_wilson_ch9.mp3

[XBL2]
XML Binding Language (XBL) 2.0, working draft. Ian Hickson, editor. W3C, 2007.
http://www.w3.org/TR/2007/WD-xbl-20070117/

[XDuce]
XDuce: A statically typed XML processing language. Haruo Hosoya and Benjamin
C. Pierce. In ACM Trans. Inter. Tech., volume 3, number 2, pages 117–148. ACM
Press, 2003. ISSN: 1533-5399.
http://doi.acm.org/10.1145/767193.767195

[XercesC]
Xerces C++ Parser. The Apache Software Foundation.
http://xml.apache.org/xerces-c/ (referenced: 2007-04-02)

[XForms]
XForms 1.0. Micah Dubinko, Leigh L. Klotz, Jr., Roland Merrick and T. V. Ra-
man, editors. W3C, 2003.
http://www.w3.org/TR/2003/REC-xforms-20031014/

[XHTML-MP]
XHTML Mobile Profile. WAP Forum, 2001.
http://www.openmobilealliance.org/tech/affiliates/wap/
wap-277-xhtmlmp-20011029-a.pdf (referenced: 2007-04-23)

[XHTML10]
XHTML™ 1.0: The Extensible HyperText Markup Language. Steven Pemberton et
al. W3C, 2000.
http://www.w3.org/TR/2000/REC-xhtml1-20000126/

[XHTML10XSD]
XHTML™ 1.0 in XML Schema. Masayasu Ishikawa, editor. W3C, 2002.
http://www.w3.org/TR/2002/NOTE-xhtml1-schema-20020902/

[XHTML11]
XHTML™ 1.1 – Module-based XHTML. Murray Altheim and Shane McCarron,
editors. W3C, 2001.
http://www.w3.org/TR/2001/REC-xhtml11-20010531/

[XHTML20]
XHTML™ 2.0, working draft. Jonny Axelsson, Beth Epperson, Masayasu Ishi-
kawa, Shane McCarron, Ann Navarro and Steven Pemberton, editors. W3C,
2003.
http://www.w3.org/TR/2003/WD-xhtml2-20030506/

[XHTMLBasic]
XHTML™ Basic. Mark Baker, Masayasu Ishikawa, Shinichi Matsui, Peter Stark,
Ted Wugofski and Toshihiko Yamakami, editors. W3C, 2000.
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219/

REFERENCES 89

http://www.w3.org/TR/2007/WD-xbl-20070117/
http://www.w3.org/TR/2007/WD-xbl-20070117/
http://doi.acm.org/10.1145/767193.767195
http://doi.acm.org/10.1145/767193.767195
http://xml.apache.org/xerces-c/
http://xml.apache.org/xerces-c/
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.openmobilealliance.org/tech/affiliates/wap/wap-277-xhtmlmp-20011029-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-277-xhtmlmp-20011029-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-277-xhtmlmp-20011029-a.pdf
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/2002/NOTE-xhtml1-schema-20020902/
http://www.w3.org/TR/2002/NOTE-xhtml1-schema-20020902/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2003/WD-xhtml2-20030506/
http://www.w3.org/TR/2003/WD-xhtml2-20030506/
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219/
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219/

[XML]
Extensible Markup Language (XML) 1.0 (Fourth Edition). Tim Bray, Jean Paoli, C.
M. Sperberg-McQueen, Eve Maler and François Yergeau, editors. W3C, 2006.
http://www.w3.org/TR/2006/REC-xml-20060816/

[XML11]
Extensible Markup Language (XML) 1.1 (Second Edition). Tim Bray, Jean Paoli, C.
M. Sperberg-McQueen, Eve Maler, François Yergeau and John Cowan, editors.
W3C, 2006.
http://www.w3.org/TR/2006/REC-xml11-20060816/

The document has been edited in place on 29 September 2006.
[xmlid]

xml:id Version 1.0. Jonathan Marsh, Daniel Veillard and Norman Walsh, editors.
W3C, 2005.
http://www.w3.org/TR/2005/REC-xml-id-20050909/

[XMLNS]
Namespaces in XML 1.0 (Second Edition). Tim Bray, Dave Hollander, Andrew Lay-
man and Richard Tobin, editors. W3C, 2006.
http://www.w3.org/TR/2006/REC-xml-names-20060816/

[XOM]
XOM. Elliotte Rusty Harold. 2006.
http://xom.nu/ (referenced: 2007-03-23)

[XPath]
XML Path Language (XPath). James Clark and Steve DeRose, editors. W3C, 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116

[XSD]
XML Schema Part 1: Structures Second Edition. Henry S. Thompson, David Beech,
Murray Maloney and Noah Mendelsohn, editors. W3C, 2004.
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
(referenced: 2007-03-03)

[XSDDatatypes]
XML Schema Part 2: Datatypes Second Edition. Paul V. Biron and Ashok Malhotra,
editors. W3C, 2004.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[XSDDatatypes11WD]
XML Schema 1.1 Part 2: Datatypes, working draft. David Peterson, Paul V. Biron,
Ashok Malhotra and C. M. Sperberg-McQueen, editors. W3C, 2006.
http://www.w3.org/TR/2006/WD-xmlschema11-2-20060217/

[XSDDatatypesFE]
XML Schema Part 2: Datatypes. Paul V. Biron and Ashok Malhotra, editors. W3C,
2001.
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

90 AN HTML5 CONFORMANCE CHECKER

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2005/REC-xml-id-20050909/
http://www.w3.org/TR/2005/REC-xml-id-20050909/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://xom.nu/
http://xom.nu/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2006/WD-xmlschema11-2-20060217/
http://www.w3.org/TR/2006/WD-xmlschema11-2-20060217/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

[XSLT]
XSL Transformations (XSLT) Version 1.0. James Clark, editor. W3C, 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116

REFERENCES 91

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116

Appendix: Table Integrity Checker

public final class TableChecker extends Checker {

private Table current;

/** Grows from the tail. */
private final LinkedList<Table> stack = new LinkedList<Table>();

private void push() {
if (current != null) {

stack.addLast(current);
}
current = new Table(this);

}

private void pop() throws SAXException {
if (current == null) {

throw new IllegalStateException("Bug!");
}
current.end();
if (stack.isEmpty()) {

current = null;
} else {

current = stack.removeLast();
}

}

public void startElement(String uri, String localName, String qName,
Attributes atts) throws SAXException {

if ("http://www.w3.org/1999/xhtml".equals(uri)) {
if ("table".equals(localName)) {

push();
} else if (current != null) {

if ("td".equals(localName)) {
current.startCell(false, atts);

} else if ("th".equals(localName)) {
current.startCell(true, atts);

} else if ("tr".equals(localName)) {
current.startRow();

} else if ("tbody".equals(localName)
|| "thead".equals(localName)
|| "tfoot".equals(localName)) {

current.startRowGroup(localName);
} else if ("col".equals(localName)) {

current.startCol(AttributeUtil.parseNonNegativeInteger(atts.getValue(
"", "span")));

} else if ("colgroup".equals(localName)) {
current.startColGroup(AttributeUtil.parseNonNegativeInteger(atts.getValue(

"", "span")));
}

93

}
}

}

public void endElement(String uri, String localName, String qName)
throws SAXException {

if ("http://www.w3.org/1999/xhtml".equals(uri)) {
if ("table".equals(localName)) {

pop();
} else if (current != null) {

if ("td".equals(localName)) {
current.endCell();

} else if ("th".equals(localName)) {
current.endCell();

} else if ("tr".equals(localName)) {
current.endRow();

} else if ("tbody".equals(localName)
|| "thead".equals(localName)
|| "tfoot".equals(localName)) {

current.endRowGroup();
} else if ("col".equals(localName)) {

current.endCol();
} else if ("colgroup".equals(localName)) {

current.endColGroup();
}

}
}

}

public void reset() {
stack.clear();
current = null;

}
}

final class Table {

/** An enumeration for keeping track of the parsing state of a table. */
private enum State {

/** The table element start has been seen. No child elements have been seen.
* A start of a column, a column group, a row or a row group or the end of
* the table is expected. */

IN_TABLE_AT_START,

/** The table element is the open element and rows have been seen. A row in
* an implicit group, a row group or the end of the table is expected. */

IN_TABLE_AT_POTENTIAL_ROW_GROUP_START,

/** A column group is open. It can end or a column can start. */
IN_COLGROUP,

/** * A column inside a column group is open. It can end. */
IN_COL_IN_COLGROUP,

/** A column that is a child of table is open. It can end. */
IN_COL_IN_IMPLICIT_GROUP,

/** The open element is an explicit row group. It may end or a row may start. */
IN_ROW_GROUP,

/** A row in a an explicit row group is open. It may end or a cell may start. */
IN_ROW_IN_ROW_GROUP,

94 AN HTML5 CONFORMANCE CHECKER

/** A cell inside a row inside an explicit row group is open. It can end. */
IN_CELL_IN_ROW_GROUP,

/** A row in an implicit row group is open. It may end or a cell may start. */
IN_ROW_IN_IMPLICIT_ROW_GROUP,

/** The table itself is the currently open element, but an implicit row group
* been started by previous rows. A row may start, an explicit row group may
* start or the table may end. */

IN_IMPLICIT_ROW_GROUP,

/** A cell inside an implicit row group is open. It can close. */
IN_CELL_IN_IMPLICIT_ROW_GROUP,

/** The table itself is the currently open element. Columns and/or column groups
* have been seen but rows or row groups have not been seen yet. A column, a
* column group, a row or a row group can start. The table can end. */

IN_TABLE_COLS_SEEN
}

private State state = State.IN_TABLE_AT_START;

private final TableChecker owner;

/** The number of suppressed element starts. */
private int suppressedStarts = 0;

/** Indicates whether the width of the table was established by column markup. */
private boolean hardWidth = false;

/** The column count established by column markup or by the first row. */
private int columnCount = -1;

/** The actual column count as stretched by the widest row. */
private int realColumnCount = 0;

/** A colgroup span that hasn't been actuated yet in case the element has
* col children. The absolute value counts. The negative sign means that
* the value was implied. */

private int pendingColGroupSpan = 0;

/** A set of the IDs of header cells. */
private final Set<String> headerIds = new HashSet<String>();

/** A list of cells that refer to headers (in the document order). */
private final List<Cell> cellsReferringToHeaders = new LinkedList<Cell>();

/** The current row group (also implicit groups have an explicit object). */
private RowGroup current;

/** The head of the column range list. */
private ColumnRange first = null;

/** The tail of the column range list. */
private ColumnRange last = null;

/** The range under inspection. */
private ColumnRange currentColRange = null;

/** The previous range that was inspected. */
private ColumnRange previousColRange = null;

APPENDIX: TABLE INTEGRITY CHECKER 95

/** Constructor.
* @param owner reference back to the checker */

public Table(TableChecker owner) {
super();
this.owner = owner;

}

private boolean needSuppressStart() {
if (suppressedStarts > 0) {

suppressedStarts++;
return true;

} else {
return false;

}
}

private boolean needSuppressEnd() {
if (suppressedStarts > 0) {

suppressedStarts--;
return true;

} else {
return false;

}
}

void startRowGroup(String type) throws SAXException {
if (needSuppressStart()) {

return;
}
switch (state) {

case IN_IMPLICIT_ROW_GROUP:
current.end();

// fall through
case IN_TABLE_AT_START:
case IN_TABLE_COLS_SEEN:
case IN_TABLE_AT_POTENTIAL_ROW_GROUP_START:

current = new RowGroup(this, type);
state = State.IN_ROW_GROUP;
break;

default:
suppressedStarts = 1;
break;

}
}

void endRowGroup() throws SAXException {
if (needSuppressEnd()) {

return;
}
switch (state) {

case IN_ROW_GROUP:
current.end();
current = null;
state = State.IN_TABLE_AT_POTENTIAL_ROW_GROUP_START;
break;

default:
throw new IllegalStateException("Bug!");

}
}

void startRow() {
if (needSuppressStart()) {

return;

96 AN HTML5 CONFORMANCE CHECKER

}
switch (state) {

case IN_TABLE_AT_START:
case IN_TABLE_COLS_SEEN:
case IN_TABLE_AT_POTENTIAL_ROW_GROUP_START:

current = new RowGroup(this, null);
// fall through

case IN_IMPLICIT_ROW_GROUP:
state = State.IN_ROW_IN_IMPLICIT_ROW_GROUP;
break;

case IN_ROW_GROUP:
state = State.IN_ROW_IN_ROW_GROUP;
break;

default:
suppressedStarts = 1;
return;

}
currentColRange = first;
previousColRange = null;
current.startRow();

}

void endRow() throws SAXException {
if (needSuppressEnd()) {

return;
}
switch (state) {

case IN_ROW_IN_ROW_GROUP:
state = State.IN_ROW_GROUP;
break;

case IN_ROW_IN_IMPLICIT_ROW_GROUP:
state = State.IN_IMPLICIT_ROW_GROUP;
break;

default:
throw new IllegalStateException("Bug!");

}
current.endRow();

}

void startCell(boolean header, Attributes attributes) throws SAXException {
if (needSuppressStart()) {

return;
}
switch (state) {

case IN_ROW_IN_ROW_GROUP:
state = State.IN_CELL_IN_ROW_GROUP;
break;

case IN_ROW_IN_IMPLICIT_ROW_GROUP:
state = State.IN_CELL_IN_IMPLICIT_ROW_GROUP;
break;

default:
suppressedStarts = 1;
return;

}
if (header) {

int len = attributes.getLength();
for (int i = 0; i < len; i++) {

if ("ID".equals(attributes.getType(i))) {
headerIds.add(attributes.getValue(i));

}
}

}
String[] headers = AttributeUtil.split(attributes.getValue("",

APPENDIX: TABLE INTEGRITY CHECKER 97

"headers"));
Cell cell = new Cell(

Math.abs(AttributeUtil.parsePositiveInteger(attributes.getValue(
"", "colspan"))),

Math.abs(AttributeUtil.parseNonNegativeInteger(attributes.getValue(
"", "rowspan"))), headers, header,

owner.getDocumentLocator(), owner.getErrorHandler());
if (headers.length > 0) {

cellsReferringToHeaders.add(cell);
}
current.cell(cell);

}

void endCell() {
if (needSuppressEnd()) {

return;
}
switch (state) {

case IN_CELL_IN_ROW_GROUP:
state = State.IN_ROW_IN_ROW_GROUP;
break;

case IN_CELL_IN_IMPLICIT_ROW_GROUP:
state = State.IN_ROW_IN_IMPLICIT_ROW_GROUP;
break;

default:
throw new IllegalStateException("Bug!");

}
}

void startColGroup(int span) {
if (needSuppressStart()) {

return;
}
switch (state) {

case IN_TABLE_AT_START:
hardWidth = true;
columnCount = 0;

// fall through
case IN_TABLE_COLS_SEEN:

pendingColGroupSpan = span;
state = State.IN_COLGROUP;
break;

default:
suppressedStarts = 1;
break;

}
}

void endColGroup() {
if (needSuppressEnd()) {

return;
}
switch (state) {

case IN_COLGROUP:
int right = columnCount + Math.abs(pendingColGroupSpan);
Locator locator = new LocatorImpl(owner.getDocumentLocator());
ColumnRange colRange = new ColumnRange("colgroup", locator,

columnCount, right);
appendColumnRange(colRange);
columnCount = right;
realColumnCount = columnCount;
state = State.IN_TABLE_COLS_SEEN;
break;

98 AN HTML5 CONFORMANCE CHECKER

default:
throw new IllegalStateException("Bug!");

}
}

void startCol(int span) throws SAXException {
if (needSuppressStart()) {

return;
}
switch (state) {

case IN_TABLE_AT_START:
hardWidth = true;
columnCount = 0;

// fall through
case IN_TABLE_COLS_SEEN:

state = State.IN_COL_IN_IMPLICIT_GROUP;
break;

case IN_COLGROUP:
if (pendingColGroupSpan > 0) {

warn("A col element causes a span attribute with value "
+ pendingColGroupSpan
+ " to be ignored on the parent colgroup.");

}
pendingColGroupSpan = 0;
state = State.IN_COL_IN_COLGROUP;
break;

default:
suppressedStarts = 1;
return;

}
int right = columnCount + Math.abs(span);
Locator locator = new LocatorImpl(owner.getDocumentLocator());
ColumnRange colRange = new ColumnRange("col", locator,

columnCount, right);
appendColumnRange(colRange);
columnCount = right;
realColumnCount = columnCount;

}

private void appendColumnRange(ColumnRange colRange) {
if (last == null) {

first = colRange;
last = colRange;

} else {
last.setNext(colRange);
last = colRange;

}
}

void warn(String message) throws SAXException {
owner.warn(message);

}

void err(String message) throws SAXException {
owner.err(message);

}

void endCol() {
if (needSuppressEnd()) {

return;
}
switch (state) {

case IN_COL_IN_IMPLICIT_GROUP:

APPENDIX: TABLE INTEGRITY CHECKER 99

state = State.IN_TABLE_COLS_SEEN;
break;

case IN_COL_IN_COLGROUP:
state = State.IN_COLGROUP;
break;

default:
throw new IllegalStateException("Bug!");

}
}

void end() throws SAXException {
switch (state) {

case IN_IMPLICIT_ROW_GROUP:
current.end();
current = null;
break;

case IN_TABLE_AT_START:
case IN_TABLE_AT_POTENTIAL_ROW_GROUP_START:
case IN_TABLE_COLS_SEEN:

break;
default:

throw new IllegalStateException("Bug!");
}

// Check referential integrity
for (Iterator<Cell> iter = cellsReferringToHeaders.iterator(); iter.hasNext();) {

Cell cell = iter.next();
String[] headings = cell.getHeadings();
for (int i = 0; i < headings.length; i++) {

String heading = headings[i];
if (!headerIds.contains(heading)) {

cell.err("The \u201Cheaders\u201D attribute on the element \u201C"
+ cell.elementName()
+ "\u201D refers to the ID \u201C"
+ heading
+ "\u201D, but there is no \u201Cth\u201D element with that ID"
+ " in the same table.");

}
}

}

// Check that each column has non-extended cells
ColumnRange colRange = first;
while (colRange != null) {

if (colRange.isSingleCol()) {
owner.getErrorHandler().error(

new SAXParseException("Table column " + colRange
+ " established by element \u201C"
+ colRange.getElement()
+ "\u201D has no cells beginning in it.",
colRange.getLocator()));

} else {
owner.getErrorHandler().error(

new SAXParseException("Table columns in range "
+ colRange + " established by element \u201C"
+ colRange.getElement()
+ "\u201D have no cells beginning in them.",
colRange.getLocator()));

}
colRange = colRange.getNext();

}
}

100 AN HTML5 CONFORMANCE CHECKER

/** Reports a cell whose positioning has been decided back to the table
* so that column bookkeeping can be done. (Called from
* <code>RowGroup</code>--not <code>TableChecker</code>.) */

void cell(Cell cell) {
int left = cell.getLeft();
int right = cell.getRight();
// first see if we've got a cell past the last col
if (right > realColumnCount) {

// are we past last col entirely?
if (left == realColumnCount) {

// single col?
if (left + 1 != right) {

appendColumnRange(new ColumnRange(cell.elementName(), cell, left + 1, right));
}
realColumnCount = right;
return;

} else {
// not past entirely
appendColumnRange(new ColumnRange(cell.elementName(), cell, realColumnCount,

right));
realColumnCount = right;

}
}
while (currentColRange != null) {

int hit = currentColRange.hits(left);
if (hit == 0) {

ColumnRange newRange = currentColRange.removeColumn(left);
if (newRange == null) {

// zap a list item
if (previousColRange != null) {

previousColRange.setNext(currentColRange.getNext());
}
if (first == currentColRange) {

first = currentColRange.getNext();
}
if (last == currentColRange) {

last = previousColRange;
}
currentColRange = currentColRange.getNext();

} else {
if (last == currentColRange) {

last = newRange;
}
currentColRange = newRange;

}
return;

} else if (hit == -1) {
return;

} else if (hit == 1) {
previousColRange = currentColRange;
currentColRange = currentColRange.getNext();

}
}

}

int getColumnCount() { return columnCount; }
void setColumnCount(int columnCount) { this.columnCount = columnCount; }
boolean isHardWidth() { return hardWidth; }

}

/** Represents a contiguous range of columns that was established by a single
* element and that does not yet have cells in it. */

APPENDIX: TABLE INTEGRITY CHECKER 101

final class ColumnRange {

/** The locator associated with the element that established this column range. */
private final Locator locator;

/** The local name of the element that established this column range. */
private final String element;

/** The leftmost column that is part of this range. */
private int left;

/** The first column to the right that is not part of this range. */
private int right;

/** The next range in the linked list of ranges. */
private ColumnRange next;

/** Constructor
* @param element the local name of the establishing element
* @param locator a locator associated with the establishing element;
* must be suitable for retaining out-of-SAX-event!
* @param left the leftmost column that is part of this range
* @param right the first column to the right that is not part of this range */

public ColumnRange(String element, Locator locator, int left, int right) {
super();
this.element = element;
this.locator = locator;
this.left = left;
this.right = right;
this.next = null;

}

/** Hit testing.
* @param column column index
* @return -1 if the column is to the left of this range,
* 0 if the column is in this range and
* 1 if the column is to the right of this range */

int hits(int column) {
if (column < left) {

return -1;
} if (column >= right) {

return 1;
} else {

return 0;
}

}

/** Removes a column from the range possibly asking it to be destroyed or
* splitting it.
* @param column a column index
* @return <code>null</code> if this range gets destroyed,
* <code>this</code> if the range gets resized and
* the new right half range if the range gets split */

ColumnRange removeColumn(int column) {
// first, let's see if this is a 1-column range that should
// be destroyed
if (isSingleCol()) {

return null;
} else if (column == left) {

left++;
return this;

} else if (column + 1 == right) {
right--;

102 AN HTML5 CONFORMANCE CHECKER

return this;
} else {

ColumnRange created = new ColumnRange(this.element, this.locator,
column + 1, this.right);

created.next = this.next;
this.next = created;
this.right = column;
return created;

}
}

boolean isSingleCol() { return left + 1 == right; }

public String toString() {
if (isSingleCol()) {

return Integer.toString(right);
} else {

return (left + 1) + "\u2026" + (right);
}

}

ColumnRange getNext() { return next; }
void setNext(ColumnRange next) { this.next = next; }
String getElement() { return element; }
Locator getLocator() { return locator; }

}

/** Represents a row group (explicit or implicit) for table integrity checking. */
final class RowGroup {

/** Runtime type constant. */
private final Cell[] EMPTY_CELL_ARRAY = {};

/** Keeps track of the current slot row of the insertion point. */
private int currentRow = -1;

/** The column slot of the insertion point. */
private int insertionPoint = 0;

/** The index of the next uninspected item in <code>cellsOnCurrentRow</code>. */
private int nextOldCell = 0;

/** The owning table. */
private final Table owner;

/** Cells from previous rows that are still in effect extending downwards. */
private final SortedSet<Cell> cellsIfEffect = new TreeSet<Cell>(

VerticalCellComparator.THE_INSTANCE);

/** A temporary copy of <code>cellsIfEffect</code> sorted differently. */
private Cell[] cellsOnCurrentRow;

/** Whether the current row has had cells. */
private boolean rowHadCells;

/** The local name of the element that established this row group or
* <code>null</code> if this is an implicit row group. */

private final String type;

RowGroup(Table owner, String type) {
super();
this.owner = owner;
this.type = type;

APPENDIX: TABLE INTEGRITY CHECKER 103

}

public void cell(Cell cell) throws SAXException {
rowHadCells = true;
findInsertionPoint();
cell.setPosition(currentRow, insertionPoint);
owner.cell(cell);
if (cell.getBottom() > currentRow + 1) {

cellsIfEffect.add(cell);
}
insertionPoint = cell.getRight();
for (int i = nextOldCell; i < cellsOnCurrentRow.length; i++) {

cellsOnCurrentRow[i].errOnHorizontalOverlap(cell);
}

}

private void findInsertionPoint() {
for (;;) {

if (nextOldCell == cellsOnCurrentRow.length) {
break;

}
Cell other = cellsOnCurrentRow[nextOldCell];
int newInsertionPoint = other.freeSlot(insertionPoint);
if (newInsertionPoint == insertionPoint) {

break;
}
nextOldCell++;
insertionPoint = newInsertionPoint;

}
}

public void end() throws SAXException {
for (Cell cell : cellsIfEffect) {

cell.errIfNotRowspanZero(type);
}

}

public void endRow() throws SAXException {
if (!rowHadCells) {

owner.err("Row "
+ (currentRow + 1)
+ " of "
+ (type == null ? "an implicit row group"

: "a row group established by a \u201C" + type
+ "\u201D element")

+ " has no cells beginning on it.");
}

findInsertionPoint();
cellsOnCurrentRow = null;

int columnCount = owner.getColumnCount();
if (owner.isHardWidth()) {

if (insertionPoint > columnCount) {
owner.err("A table row was "

+ insertionPoint
+ " columns wide and exceeded the column count established using column"
+ " markup ("
+ columnCount + ").");

} else if (insertionPoint < columnCount) {
owner.err("A table row was "

+ insertionPoint
+ " columns wide, which is less than the column count established using"

104 AN HTML5 CONFORMANCE CHECKER

+ " column markup ("
+ columnCount + ").");

}
} else if (columnCount == -1) {

// just saw the first row
owner.setColumnCount(insertionPoint);

} else {
if (insertionPoint > columnCount) {

owner.warn("A table row was "
+ insertionPoint
+ " columns wide and exceeded the column count established by the"
+ " first row ("
+ columnCount + ").");

} else if (insertionPoint < columnCount) {
owner.warn("A table row was "

+ insertionPoint
+ " columns wide, which is less than the column count established"
+ " by the first row ("
+ columnCount + ").");

}
}

// Get rid of cells that don't span to the next row
for (Iterator<Cell> iter = cellsIfEffect.iterator(); iter.hasNext();) {

Cell cell = iter.next();
if (cell.shouldBeCulled(currentRow + 1)) {

iter.remove();
}

}
}

public void startRow() {
currentRow++;
insertionPoint = 0;
nextOldCell = 0;
rowHadCells = false;
cellsOnCurrentRow = cellsIfEffect.toArray(EMPTY_CELL_ARRAY);
// the array should already be in the right order most of the time
Arrays.sort(cellsOnCurrentRow, HorizontalCellComparator.THE_INSTANCE);

}

}

final class Cell implements Locator {

private static final int MAX_COLSPAN = 1000;
private static final int MAX_ROWSPAN = 8190;

/** The column in which this cell starts. (Zero before positioning.) */
private int left;

/** The first row in the row group onto which this cell does not span.
* (rowspan before positioning)
*
* <p>However, <code>Integen.MAX_VALUE</code> is a magic value that means
* <code>rowspan=0</code>. */

private int bottom;

/** The first column into which this cell does not span.
* (colspan before positioning.) */

private int right;

APPENDIX: TABLE INTEGRITY CHECKER 105

/** The value of the <code>headers</code> attribute split on white space. */
private final String[] headers;

/** Whether this is a <code>th</code> cell. */
private final boolean header;

/** Source column. */
private final int columnNumber;

/** Source line. */
private final int lineNumber;

/** Source public id. */
private final String publicId;

/** Source system id. */
private final String systemId;

/** The error handler. */
private final ErrorHandler errorHandler;

Cell(int colspan, int rowspan, String[] headers, boolean header,
Locator locator, ErrorHandler errorHandler) throws SAXException {

super();
this.errorHandler = errorHandler;
if (locator == null) {

this.columnNumber = -1;
this.lineNumber = -1;
this.publicId = null;
this.systemId = null;

} else {
this.columnNumber = locator.getColumnNumber();
this.lineNumber = locator.getLineNumber();
this.publicId = locator.getPublicId();
this.systemId = locator.getSystemId();

}
if (rowspan > MAX_ROWSPAN) {

warn("A rowspan attribute has the value " + rowspan
+ ", which exceeds the magic Gecko limit of " + MAX_ROWSPAN
+ ".");

}
if (colspan > MAX_COLSPAN) {

warn("A colspan attribute has the value " + colspan
+ ", which exceeds the magic browser limit of "
+ MAX_COLSPAN + ".");

}
if (rowspan == Integer.MAX_VALUE) {

throw new SAXException(
"Implementation limit reached. Table row counter overflowed.");

}
this.left = 0;
this.right = colspan;
this.bottom = (rowspan == 0 ? Integer.MAX_VALUE : rowspan);
this.headers = headers;
this.header = header;

}

public void warn(String message) throws SAXException {
if (errorHandler != null) {

errorHandler.warning(new SAXParseException(message, publicId,
systemId, lineNumber, columnNumber));

}
}

106 AN HTML5 CONFORMANCE CHECKER

public void err(String message) throws SAXException {
if (errorHandler != null) {

errorHandler.error(new SAXParseException(message, publicId,
systemId, lineNumber, columnNumber));

}
}

/** Emit errors if this cell and the argument overlap horizontally. */
public void errOnHorizontalOverlap(Cell laterCell) throws SAXException {

if (!((laterCell.right <= left) || (right <= laterCell.left))) {
this.err("Table cell is overlapped by later table cell.");
laterCell.err("Table cell overlaps an earlier table cell.");

}
}

public void setPosition(int top, int left) throws SAXException {
this.left = left;
this.right += left;
if (this.right < 1) {

throw new SAXException(
"Implementation limit reached. Table column counter overflowed.");

}
if (this.bottom != Integer.MAX_VALUE) {

this.bottom += top;
if (this.bottom < 1) {

throw new SAXException(
"Implementation limit reached. Table row counter overflowed.");

}
}

}

public boolean shouldBeCulled(int row) { return row >= bottom; }

public int freeSlot(int potentialSlot) {
if (potentialSlot < left || potentialSlot >= right) {

return potentialSlot;
} else {

return right;
}

}

public void errIfNotRowspanZero(String rowGroupType) throws SAXException {
if (this.bottom != Integer.MAX_VALUE) {

err("Table cell spans past the end of its "
+ (rowGroupType == null ? "implicit row group"

: "row group established by a \u201C" + rowGroupType + "\u201D element")
+ "; clipped to the end of the row group.");

}
}

public String elementName() { return header ? "th" : "td"; }

public int getBottom() { return bottom; }
int getLeft() { return left; }
int getRight() { return right; }
public int getColumnNumber() { return columnNumber; }
public int getLineNumber() { return lineNumber; }
public String getPublicId() { return publicId; }
public String getSystemId() { return systemId; }
public String[] getHeadings() { return headers; }
public boolean isHeader() { return header; }

}

APPENDIX: TABLE INTEGRITY CHECKER 107

final class HorizontalCellComparator implements Comparator<Cell> {

public static final HorizontalCellComparator THE_INSTANCE =
new HorizontalCellComparator();

public final int compare(Cell cell0, Cell cell1) {
if (cell0.getLeft() < cell1.getLeft()) {

return -1;
} else if (cell0.getLeft() > cell1.getLeft()) {

return 1;
} else {

throw new IllegalStateException("Two cells in effect cannot start on the"
+ " same column, so this should never happen!");

}
}

}

final class VerticalCellComparator implements Comparator<Cell> {

public static final VerticalCellComparator THE_INSTANCE =
new VerticalCellComparator();

public final int compare(Cell cell0, Cell cell1) {
if (cell0.getBottom() < cell1.getBottom()) {

return -1;
} else if (cell0.getBottom() > cell1.getBottom()) {

return 1;
} else {

if (cell0.getLeft() < cell1.getLeft()) {
return -1;

} else if (cell0.getLeft() > cell1.getLeft()) {
return 1;

} else {
throw new IllegalStateException("Two cells in effect cannot start on the"

+ " same column, so this should never happen!");
}

}
}

}

108 AN HTML5 CONFORMANCE CHECKER

	Acknowledgements
	Contents
	Glossary
	Introduction
	Motivation
	Objectives
	Methods
	Availability of the Software
	Organization of this Thesis

	History of HTML Leading to HTML5
	Early HTML
	Initial HTML at CERN
	The IIIR Draft
	HTML+
	HTML 2.0
	HTML 3.0
	HTML 3.2

	Contemporary HTML
	HTML 4
	ISO HTML
	XHTML 1.0
	Appendix C
	Processing as XML

	Modularization
	XHTML Basic
	XHTML 1.1
	XHTML Mobile Profile

	HTML5
	The Mozilla/Opera Joint Position Paper
	The WHATWG is Formed
	The WHATWG Specifications
	Web Forms 2.0
	Web Applications 1.0

	Schema Languages
	DTDs
	Infoset Augmentation
	Datatyping
	Other Problems with DTDs

	W3C XML Schema
	Document Structure Description
	TREX, RELAX, XDuce and DDML
	RELAX NG
	Datatyping
	Compact Syntax
	Use in This Project

	Schematron
	Using RELAX NG and Schematron Together
	Use in This Project

	Prior Work on Markup Checking
	The W3C Markup Validation Service
	WDG HTML Validator
	Page Valet
	The Schneegans XML Schema Validator
	Relaxed
	The Feed Validator
	Validome

	Implementation
	The SAX API
	The HTML Parser
	HTML5 as an Alternative Infoset Serialization
	TagSoup
	Parser Design
	Minor Problems

	Front End
	Back End Design
	The Jing Validation Engine
	The RELAX NG Schema
	The General Schema Design
	Common Definitions
	Common Content Models
	Common Attributes
	Common Datatypes
	Parameter Switches

	Examples of Elements

	The HTML5 Datatype Library
	Dates
	IRIs
	Language Tags
	ECMAScript Regular Expressions

	The Schematron Schema
	Exclusions
	Required Ancestors
	Referential Integrity

	The Non-Schema-Based Checkers
	Table Integrity Checker
	HTML Tables
	Class Division
	Slot Allocation
	Detected Conditions

	Checking the Text Content of Specific Elements
	Checking for Significant Inline Content
	Unicode Normalization Checking
	Requirements
	Interpretation
	Implementation

	Character Model Checking

	Shortcomings
	Non-Ideal Error Messages
	Bimorphic Content Models
	Lack of Datatype Diagnostics
	Erroneous Source Is Not Shown

	Poor Localizability
	Opportunities for Optimization
	RELAX NG
	Schematron

	Applicability in Other Contexts
	Auto-completion
	Content Management Systems

	Future Work
	Open Up
	The HTML5 Parsing Algorithm
	Tracking the Specification
	RELAX NG Message Improvements
	Completion of the Datatype Library
	More Non-Schema-Based Checkers
	Assistance for Checking Human-Checkable Requirements
	Web Service
	Embedded MathML and SVG
	Showing the Erroneous Source Markup

	Conclusions
	Correct Expectations
	Incorrect Expectations about RELAX NG
	Unexpected Discoveries about Schematron
	Overall Assessment

	References
	Appendix: Table Integrity Checker

