
(UNSUBMITTED DRAFT) No U+FFFD Generation for
Zero-Length ASCII-State Content between ISO-2022-
JP Escape Sequences

Henri Sivonen (hsivonen@mozilla.com)
2018-12-17

UTR #36: Unicode Security Considerations says1, in part:

Character encoding conversion must also not simply skip an illegal input
byte sequence. Instead, it must stop with an error or substitute a replace-
ment character (such as U+FFFD (�) REPLACEMENT CHARACTER) or an es-
cape sequence in the output. (See also Section 3.5 Deletion of Code Points.) It
is important to do this not only for byte sequences that encode characters,
but also for unrecognized or "empty" state-change sequences. For example:

[…]

• ISO-2022 shift sequences without text characters before the next shift
sequence. The formal syntaxes for HZ and most CJK ISO-2022 variants
require at least one character in a text segment between shift se -
quences. Security software written to the formal specification may not
detect malicious text (for example, "delete" with a shift-to-double-byte
then an immediate shift-to-ASCII in the middle).

Background

Previously, Gecko, the engine of Firefox and Thunderbird, used a character encod-
ing conversion library called uconv, which did not implement the above advice
and, like Internet Explorer, did not generate an U+FFFD when two ISO-2022-JP es-
cape sequences occurred without any content between them.

In Firefox 56, Gecko switched form uconv to encoding_rs, which is a newly-written
character encoding conversion library that generates U+FFFD when no content oc-
cur between ISO-2022-JP escape sequences, because the above advice from UTR
#36 is embodied in the algorithm2 specified in the WHATWG Encoding Standard. In-
stead of matching Internet Explorer, this behavior matches Chrome and Safari,
whose behavior I believe to arise from upstream ICU behavior.

1 https://www.unicode.org/reports/tr36/#Some_Output_For_All_Input

2 https://encoding.spec.whatwg.org/review-drafts/2018-06/#iso-2022-jp-decoder

mailto:hsivonen@mozilla.com
https://encoding.spec.whatwg.org/review-drafts/2018-06/#iso-2022-jp-decoder
https://www.unicode.org/reports/tr36/#Deletion_of_Noncharacters
http://unicode.org/cldr/utility/character.jsp?a=FFFD
https://www.unicode.org/reports/tr36/#Some_Output_For_All_Input

After the change, the U+FFFD generation has been reported as a bug in the email
context both when handling email subject3 and when handling email body4.

The Problem

The problem is that the requirement to generate U+FFFD when no content occurs
between ISO-2022-JP escape sequences gives ISO-2022-JP the unusual property
that the concatenating two output from a conforming ISO-2022-JP encoder and
decoding the result does yield the same output as independently decoding the two
ISO-2022-JP encoder output and then concatenating the results.

The specific case causing problems under concatenation is a transition to the ASCII
state followed immediately by a transition away form the ASCII state.

ISO-2022-JP is the only encoding specified in the WHATWG Encoding Standard that
has this unusual property.

Is the case of email subjects, the problem was addressed by treating each MIME en-
coded-word5 in a header as an independent ISO-2022-JP stream. That is, each one
is decoded independently and the result is concatenated after decoding.

Still, the U+FFFD generation requirement when there is no content between ISO-
2022-JP escape sequences poses an interoperability problem when decoding the
body of emails that have been generated using a mechanism that has involved
concatenating ISO-2022-JP encoder outputs.

Effectiveness U+FFFD Generation as a Security Measure

The example given as motivation for the U+FFFD generation requirement in UTR
#36 is: “Security software written to the formal specification may not detect mali-
cious text (for example, "delete" with a shift-to-double-byte then an immediate
shift-to-ASCII in the middle).”

However, the requirement is ineffective as a measure ensuring that ASCII strings
cannot be masked from security software operating on bytes without performing
ISO-2022-JP decoding.

Instead of injecting a transition to two-byte mode immediately followed by a tran-
sition back to ASCII, the attacker could inject a transition from the ASCII state to the
ASCII state between each character in the string to be masked or could insert tran-
sitions from the ASCII state to the Roman state and vice versa to make the string to
be masked alternate between the ASCII and Roman states.

3 https://bugzilla.mozilla.org/show_bug.cgi?id=1374149

4 https://bugzilla.mozilla.org/show_bug.cgi?id=1508136

5 https://tools.ietf.org/html/rfc2047#section-2

https://tools.ietf.org/html/rfc2047#section-2
https://bugzilla.mozilla.org/show_bug.cgi?id=1508136
https://bugzilla.mozilla.org/show_bug.cgi?id=1374149

It seems that what UTR #36 now says is ineffective. It would make sense to either
give up completely and to remove the advice to generate U+FFFD for zero-length
content between ISO-2022-JP escape sequences or to also address the other kind
of state transitions that can mask ASCII strings.

The main problem with the latter is that it would require detecting unnecessary
transitions between the ASCII and Roman states. If a legitimate encoder has gener-
ated these transitions when not strictly necessary, a new U+FFFD generation inter-
operability problem could occur.

End state 1: Drop ISO-2022-JP State Transition-Related
U+FFFD Generation Completely
Upside: No user-unwanted U+FFFD generation for non-malicious inputs. Simple
specification and implementation.

Downside: Unlike with ASCII-compatible encodings, including multibyte ones like
Shift_JIS, EUC-JP, EUC-KR, GBK and Big5, a scan for bad ASCII strings on the pre-de-
code byte level is meaningless in terms of the security properties of the post-de-
code Unicode data.

End state 2: Drop U+FFFD Generation for Zero-Length Con-
tent in the ASCII State and Add U+FFFD Generation for Other
Unnecessary Transitions
Upside: Upholds the security properties that UTR #36 guidance tries to uphold
while removing the interoperability problem in the case of concatenated conform-
ing encoder outputs.

Downside: Generates U+FFFD if the ISO-2022-JP encoder has chosen to use the Ro-
man state when not logically necessary or has chosen to switch to or from the Ro-
man state earlier than logically necessary. Complexity of specification and imple-
mentation.

Details
Generate U+FFFD if:

• A state transition was made such that the previous state had no content
and the previous state was not the ASCII state. (I.e. stop generating U+FFFD
if the zero-length state is the ASCII state.)

• A state transition to the ASCII state was preceded by the Roman state and
the next byte was not 0x5C, 0x7E or the end of the stream.

• A state transition to the Roman state was made and the next byte was not
0x5C, 0x7E, 0x1B or the end of the stream. (0x1B is on this list to avoid a
case where both this rule and the first rule would apply at the same time re -
sulting in two U+FFFDs.)

Commonality of the End States
It unclear if end state 2 is achievable considering the expectations it places on how
the Roman state is used. If it isn’t achievable, it would make sense to go all the way
to end state 1. However, both end states have a thing in common that addresses
the problem that users see at present. Both involve stopping generating U+FFFD if
the state with zero-length content is the ASCII state.

Conclusion
At this time, I suggest refining the UTR #36 advice about ISO-2022-JP to exclude
zero-lengh ASCII state from the U+FFFD generation advice. That is, a transition to
the ASCII state followed immediately by another transition should not generate
U+FFFD.

	(UNSUBMITTED DRAFT) No U+FFFD Generation for Zero-Length ASCII-State Content between ISO-2022-JP Escape Sequences
	Background
	The Problem
	Effectiveness U+FFFD Generation as a Security Measure
	End state 1: Drop ISO-2022-JP State Transition-Related U+FFFD Generation Completely
	End state 2: Drop U+FFFD Generation for Zero-Length Content in the ASCII State and Add U+FFFD Generation for Other Unnecessary Transitions
	Details

	Commonality of the End States
	Conclusion

